• Title/Summary/Keyword: 고등학생들의 추론 특성

Search Result 16, Processing Time 0.022 seconds

High School Students' Reasoning Characteristics in Problem Solving (문제해결 과정에서 나타난 고등학생들의 수학적 추론 특성)

  • Kang, Yun Soo;Kim, Min Ju
    • Journal of the Korean School Mathematics Society
    • /
    • v.16 no.1
    • /
    • pp.241-263
    • /
    • 2013
  • The purpose of this paper is to investigate high school students' reasoning characteristics in problem solving. To do this, we selected five high school students as participants and presented them some open problems which allow diverse solving approaches, and recorded their problem solving process. Through analyzing their problem solving process relate to their solution, we found the followings: First, students quickly try to calculate without understanding the given problem. Second, students concern whether their solution is right or not rather than consider mathematical warrants for the results of their strategies. Third, students have difficulties to consider more than two conditions at the same time necessary to solve problem. Forth, students are not familiar to use precedence knowledge relate to given tasks. Fifth, students could have difficulties in problem solving because of easy generalization.

  • PDF

Effects of Teaching of Limit Using GeoGebra to High School Students' Mathematics Learning (GeoGebra를 활용한 극한 지도가 고등학생들의 수학 학습에 미치는 영향)

  • Kong, Min Sook;Kang, Yun Soo
    • Journal of the Korean School Mathematics Society
    • /
    • v.17 no.4
    • /
    • pp.697-716
    • /
    • 2014
  • The purpose of this paper is to investigate high school students' learning characteristics which revealed in their learning process of limit using GeoGebra. And we are going to analyze effects of teaching of limit using GeoGebra to high school students' interesting and attitudes for mathematics learning. To do this, we selected three high school students as participants and ask them performing limit learning using GeoGebra. We recorded their problem solving process. Through analyzing their problem solving process relate to their solution, we found the followings: First, students did not logically approach based on mathematical properties or given materials, rather showing tendency decide with self-conscious and intuition. Second, it is possible that former reasoning strategies disturb following reasoning in the process of high school students' mathematics learning. Third, learning process of limit using GeoGebra help high school students to identify and correct their errors relate to limit learning. Forth, learning process of limit using GeoGebra positively effects to high school students' interesting and attitudes for mathematics learning.

  • PDF

An Investigation of the Characteristics of Analogs Generated by High School Students on Ionic Bonding: A Comparison of Characteristics of Analogs Depending on Their Cognitive Variables (고등학생이 이온 결합에 대해 생성한 비유의 특징 분석 -학생의 인지적 특성에 따른 비유의 특징 비교-)

  • Kim, Minhwan;Kwon, Hyeoksoon;Kim, Youjung;Noh, Taehee
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.1
    • /
    • pp.39-48
    • /
    • 2017
  • In this study, we investigated the characteristics of analogs generated by high school students to explain ionic bonding in the perspectives of the number of analogs, the understanding of mapping, and the source and type of analogs. We also compared the results by students' conceptual understanding, logical thinking ability, and analogical reasoning ability. Participants in this study were 395 11th graders in Seoul. The results of the study showed that the higher the conceptual understanding, the logical thinking ability, and the analogical reasoning ability, the more the students generated the analogs. The understanding of mapping was related to logical thinking ability and analogical reasoning ability. It is noteworthy that the sources of analogs differed only depending on their conceptual understanding of the target concept among the cognitive variables studied. Students who had higher conceptual understanding also generated analogs from more diverse sources. Some types of the generated analogs were related to the cognitive variables. For examples, the students who had higher conceptual understanding and logical thinking ability generated more verbal/pictorial analogs. The types of analogs were not related to cognitive variables in terms of artificiality, abstraction, and systemicity. Educational implications of these findings were discussed.

Development and Application of Learning Materials for the Law of Planetary Motion using the Kepler's Abductive Reasoning (행성운동법칙에 관한 케플러의 귀추적 사고를 도입한 학습자료의 개발 및 적용)

  • Park, Su-Gyeong
    • Journal of the Korean earth science society
    • /
    • v.33 no.2
    • /
    • pp.170-182
    • /
    • 2012
  • The purpose of this study was to develop learning materials based on the Kepler's abductive reasoning and to identify high school students' rule-inferring strategies on the law of planetary motion. The learning materials including the concepts of solar magnetic field, conservation of figure skater's angular momentum and Kepler's polyhedral theory were developed and the questions about Kepler's 2nd and 3rd law of planetary motion were also created. The participants were 79science high school students and 83general high school students. The patterns and properties of their abductive inference were analyzed. The findings revealed that the students showed 'incomplete analogy abduction', 'analogy abduction' and 'reconstruction' to generate the hypotheses concerning the Mars' motion related to the solar magnetic field. There were more general high school students who showed the incomplete analogy abduction than science high school students. On the other hand, there were more science high school students who showed the analogy abduction and reconstruction strategy than general high school students. Also, they showed 'incomplete analogy abduction', 'analogy abduction' and 'model construction and manipulation' to generate the hypotheses concerning Kepler's second law. A number of general high school students showed the incomplete analogy. It is suggested that because the analogy of figure skater cause the students' alternative framework to use, more detailed demonstration is necessary in class. In addition, students combined Kepler's polyhedral theory with their prior knowledge to infer Kepler's third law.

Exploring the Factors Influencing the Understanding of the Nature of Science through Authentic Open Inquiries (개방적 참탐구 활동에서 학생들의 과학의 본성에 대한 이해에 영향을 미치는 요인 탐색)

  • Kim, Mi-Kyung;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.6
    • /
    • pp.565-578
    • /
    • 2008
  • The purpose of this study is to search for the factors that influence students' understanding of the nature of science through the experience of the cognitive processes of authentic open inquiries. The freshmen of a science high school practiced authentic open inquiries reflecting epistemological characteristics of authentic science. The case study was conducted with four focus students who were successful or unsuccessful at learning the nature of science during the authentic open inquiry activity. Questions that the focus students asked during the inquiries as well as students' answers to pre- and post-VNOS (C type) were analysed, and then elaborated in the semi-structured interview. The findings suggest that open inquiry activities provide the inquiry contexts that help science high school students to understand the nature of science, and that the characteristics of students' cognition influence the understanding of the nature of science. For instance, designing experiments with their own research questions had an influence on the students' understanding about the scientific methods and the diversity of research types, and drawing conclusions from their own data made students experience scientific reasoning. In addition, the experience of collecting anomalous data helped students to understand the role of inferences in generating scientific knowledge and the creative nature of scientific knowledge. In this inquiry context, the reflective thinking that came from proactive discussion among students, made students think about the validity of the designing experiments and interpreting data, and helped them to understand the uncertain nature of reasoning and the diverse nature of scientific methods. Moreover, divergent thinking linked to analogical thinking helped students to understand the creative nature of science.

Exploring Science High School Students' Epistemic Goals, Epistemic Considerations and Complexity of Reasoning in Open Inquiry (자유탐구 활동에서 나타난 과학고등학교 학생들의 인식적 목표, 인식적 이해와 추론의 복잡성 탐색)

  • Yun, Hyeonjeong;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.4
    • /
    • pp.541-553
    • /
    • 2018
  • The purpose of this study is to explore the relationship between epistemic goals, epistemic considerations and complexity of reasoning of science high school students in an open inquiry and to explore the context on how open inquiry compares with the characteristics of an authentic scientific inquiry. Two teams were selected as focus groups and a case study was conducted. The findings are as follows: First, the contexts, such as 'sharing the value for the phenomenon understanding, reflection on the value of the research, task characteristics that require collaboration and consensus, and sufficient communication opportunities,' promote epistemic goals and considerations. On the other hand, contexts such as 'lack of opportunity for critical review of related literature and environmental constraints' lowered epistemic sides. Second, epistemic goals and considerations influenced the reasoning complexity. The goal of 'scientific sense making' led to reasoning that pose testable hypotheses based on students' own questions. The high justification considerations led to purposely focusing attention to the control designs and developing creative experimental know-how. The high audience considerations led to defending their findings through argumentation and suggesting future research. On the other hand, the goal of 'doing the lesson' and the low justification considerations led to reasoning that did not interpret the meaning of the data and did not control the limit of experiment. The low audience considerations led to reasoning that did not actively defend their findings and not suggest future research. The results of this study suggest that guidance should provide communication and critical review opportunities.

The Effects of Authentic Open Inquiry on Cognitive Reasoning through an Analysis of Types of Student-generated Questions (학생들이 제시한 질문의 유형 분석을 통한 개방적 참탐구 활동의 인지적 추론 측면의 효과)

  • Kim, Mi-Kyung;Kim, Heui-Bafk
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.9
    • /
    • pp.930-943
    • /
    • 2007
  • The purpose of this study was to investigate if students may actually experience scientific reasoning based on an epistemology of authentic science during authentic open inquiry. The samples were 86 10th graders in a science-high school in Seoul. The experimental group practiced authentic open inquiry and the control group practiced traditional school science inquiry in five weeks. Then, the questions students asked while performing inquiry tasks were analyzed. The frequency of the questions asked by students was almost same between two groups, however, the types of questions were different. The frequency of thinking questions in experimental group was higher than the control, and the difference was statistically significant (P<.01). Particularly, the frequency of expansive thinking questions and anomaly detection questions was much higher in experimental than the control group. Judging from the result, with the students from the experimental group asking questions reflecting on the epistemology of authentic science such as scientific methods, anomalous data, and uncertainty about reasoning, students may understand authentic science features during the activities of open authentic inquiry. The result from comparing questions according to the inquiry subject showed that more openness caused the higher frequency of anomaly detection questions and strategy questions, but that inductive thinking questions and analogical thinking questions were connected to inquiry subject rather than the openness of the inquiry.

Development of Practical Problem-focused teaching plans for Teenagers' 'Preparation for Successful aging' in the 'Family life in old age' unit (고등학생의 '성공적인 노후생활 준비교육'을 위한 실천적 문제 중심 가정과 수업의 교수 설계와 개발)

  • Lee, Jong-Hui;Cho, Byung-Eun
    • Journal of Korean Home Economics Education Association
    • /
    • v.23 no.3
    • /
    • pp.161-183
    • /
    • 2011
  • This study aims to design, develop the impact of a high school course in practical problem- focused teaching plan which will enable students to deal with an aging society, and prepare well for the aging by looking at issues the elderly face. This study set a target of analyzing the 2007 revised curriculum manual to develop instructor-led teaching and learning plans for 'Successful aging preparation'. Five common subjects were reframed on a practical problem basis through factor analysis of preliminary research regarding aging education for teenagers and the 2007 revised curriculum and textbooks of Technology Home Economics, and Human Development. The practical problem was 'What do we need to do to Successfully live an independent life in aging?', and the subjects studied to answer this question were the aging society and population changes. the nature of the elderly, aging preparation, care of the elderly, and welfare services for the elderly. These five subjects were grouped under the main categories of The Aging Society. Understanding the Elderly, and aging Preparation. The ultimate objective of the lessons was, through critical reasoning, to inquire into the causes of current problems the elderly face so that teenagers can understand aging societies and the elderly, and prepare for a Successful aging. Another objective was to seek reasonable alternatives for teenagers as they prepare for Successful and independent aging, and increase their problem-solving abilities in choosing the best course of action by considering the ripple effect of consequences of each of those alternatives. The practical problem-teaching lesson plans consisted of five classes on practical reasoning instruction. This study suggests that new high school curricula should include lessons on preparation for aging so that students can deal successfully with our aging society.

  • PDF

An analysis of characteristics of mathematically gifted high school students' thinking in design activities using GrafEq (GrafEq를 활용한 디자인 활동에서 나타나는 수학영재아의 사고특성분석)

  • Lee, Ji Won;Shin, Jaehong;Lee, Soo Jin
    • Journal of the Korean School Mathematics Society
    • /
    • v.16 no.3
    • /
    • pp.539-560
    • /
    • 2013
  • The purpose of this study was to investigate characteristics of mathematically gifted high school students' thinking in design activities using GrafEq. Eight mathematically gifted high school students, who already learned graphs of functions and inequalities necessary for design activities, were selected to work in pairs in our experiment. Results indicate that logical thinking and mathematical abstraction, intuitive and structural insights, flexible thinking, divergent thinking and originality, generalization and inductive reasoning emerged in the design activities. Nonetheless, fine-grained analysis of their mathematical activities also implies that teachers for gifted students need to emphasize both geometric and algebraic aspects of mathematical subjects, especially, algebraic expressions, and the tasks for the students are to be rich enough to provide a variety of ways to simplify the expressions.

  • PDF

Students' Problem Solving Based on their Construction of Image about Problem Contexts (문제맥락에 대한 이미지가 문제해결에 미치는 영향)

  • Koo, Dae Hwa;Shin, Jaehong
    • Journal of the Korean School Mathematics Society
    • /
    • v.23 no.1
    • /
    • pp.129-158
    • /
    • 2020
  • In this study, we presented two geometric tasks to three 11th grade students to identify the characteristics of the images that the students had at the beginning of problem-solving in the problem situations and investigated how their images changed during problem-solving and effected their problem-solving behaviors. In the first task, student A had a static image (type 1) at the beginning of his problem-solving process, but later developed into a dynamic image of type 3 and recognized the invariant relationship between the quantities in the problem situation. Student B and student C were observed as type 3 students throughout their problem-solving process. No differences were found in student B's and student C's images of the problem context in the first task, but apparent differences appeared in the second task. In the second task, both student B and student C demonstrated a dynamic image of the problem context. However, student B did not recognize the invariant relationship between the related quantities. In contrast, student C constructed a robust quantitative structure, which seemed to support him to perceive the invariant relationship. The results of this study also show that the success of solving the task 1 was determined by whether the students had reached the level of theoretical generalization with a dynamic image of the related quantities in the problem situation. In the case of task 2, the level of covariational reasoning with the two varying quantities in the problem situation was brought forth differences between the two students.