References
- 교육부(2015). 수학과 교육과정. 교육과학기술부 고시 제2015-74호 [별책 8].
- 김남희, 나귀수, 박경미, 이경화, 정영옥, 홍진곤(2011). 수학교육과정과 교재연구. 서울: 경문사.
- 우정호(1999). 학교수학의 교육적 기초. 서울: 서울대학교출판부.
- 우정호, 정영옥, 박경미, 이경화, 김남희, 나귀수, 임재훈(2006). 수학교육학 연구방법론. 서울: 경문사.
- 권영인, 서보억(2007). 고등학교 도형의 방정식 단원에서 논증기하의 활용에 대한 연구. 한국수학교육학회 시리즈 E. 수학교육논문집, 21(3), 451-466.
- 김근배, 최옥환, 박달원(2018). 유추와 분석적 방법을 활용한 타원 초점 작도. 한국학교수학회논문집, 21(4), 401-418.
- 김성준(2002). 대수적 사고와 대수 기호에 관한 고찰. 수학교육학회, 12(2), 229-245.
- 김희, 김선희(2010). 기하 증명에서 기호의 역할과 기호 중재에 의한 직관의 형성. 수학교육학연구, 20(4), 511-528.
- 나귀수(1997). 기하 개념의 이해와 적용에 관한 소고. 수학교육학연구, 7(2), 349-358.
- 나귀수(2009). 분석법을 중심으로 한 기하 증명 지도에 대한 연구. 수학교육학연구, 19(2), 185-206.
- 도정철, 손홍찬(2015). GSP를 사용한 기하수업에서 수준별 학생의 논증기하와 해석기하의 연결에 관한 연구. 한국학교수학회논문집, 18(4), 411-429.
- 마민영, 신재홍(2016). 대수 문장제의 해결에서 드러나는 중등 영재 학생간의 공변 추론 수준 비교 및 분석. 학교수학, 18(1), 43-59.
- 박종희, 신재홍, 이수진, 마민영(2017). 그래프 유형에 따른 두 공변 추론 수준 이론의 적용 및 비교. 수학교육학연구, 27(1), 23-49.
- 반은섭, 신재홍, 류희찬(2016). 오마르 카얌(Omar Khayyam)이 제시한 삼차방정식의 기하학적 해법의 교육적 활용. 학교수학, 18(3), 589-608.
- 반은섭, 류희찬(2017). 동적 기하 환경을 활용한 문제 해결 과정에서 변수 이해 및 일반화 수준 향상에 관한 사례연구. 수학교육학연구, 27(1), 89-112.
- 손홍찬(2011). GSP를 활용한 역동적 기하 환경에서 기하적 성질의 추측. 학교수학, 13(1), 107-125.
- 양은경, 신재홍(2014). 개방형 기하 문제에서 학생의 드래깅 활동을 통해 나타난 수학적 추론 분석. 수학교육학연구, 24(1), 1-27.
- 양은경, 신재홍(2015). 역동적 기하 환경에서 중등 영재학생들의 합동변환 활동에 대한 발생적 분해. 수학교육학연구, 25(4), 499-524.
- 장혜원(2013). Byrne의 'Euclid 원론'에 기초한 증명 지도에 대한 연구. 수학교육학연구, 23(2), 173-192.
- 정영우, 김부윤(2015). 기하 증명에서의 대표성에 관한 연구. 수학교육학연구, 25(2), 225-240.
- Boyer, C. B. (1946). Proportion, equation, function: Three steps in the development of a concept. Scripta Mathematica, 12, 5-13.
- Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352-378. https://doi.org/10.2307/4149958
- Carlson, M. P., Smith, N., & Persson, J. (2003). Developing and connecting calculus students' notions of rate of change and accumulation: The fundamental theorem of calculus. In N. A. Pateman, B. J. Dougherty, & J. T. Zilliox (Eds.), Proceedings of the Joint Meeting of PME and PMENA (Vol. 2, pp. 165-172). Honolulu, HI: CRDG, College of Education, University of Hawai'i.
- Confrey, J. & Smith, E. (1994). Exponential functions, rate of change, and the multiplicative unit. Educational Studies in Mathematics, 26, 135-164. https://doi.org/10.1007/BF01273661
- Davydov, V. V. (1990). Types of generalisation in instruction: Logical and psychological problems in the structuring of school curricula (Soviet studies in mathematics education, Vol. 2; J. Kilpatrick, Ed., J. Teller, Trans.).Reston, VA: National Council of Teachers of Mathematics. (Original work published 1972)
- Dindyal, J. (2004). Algebraic thinking in geometry at high school level: Students' use of variables and unknowns. In I. Putt, R. Faragher & M. McLean (Eds.), Mathematics education for the third millennium: Towards 2010 (Proceedings of the 27th annual conference of the Mathematics Education Research Group of Australasia, Townsville) (pp. 183-190). Sydney: MERGA, Inc.
- Dindyal, J. (2007). The need for an inclusive framework for students' thinking in school geometry. The Montana Mathematics Enthusiast, 4(1), 73-83.
- Duval, R. (2002). Representation, vision, and visualization: Cognitive functions in mathematical Thinking. Basic Issues for Learning. In F. Hitt (Ed.), Representations and mathematics visualization (pp. 311-336). Mexico: PME-NA-Cinvestav-IPN.
- Ellis, A. B. (2011). Algebra in the middle school: Developing functional relationship through quantitative reasoning. In J. Cai, & E. Knuth (Eds.), Early algebraization (pp. 215-238): Springer-Verlag Berlin Heidelberg.
- Herbert, K., & Brown, R. (1999). Patterns as tools for algebraic thinking. In B. Moses (Ed.), Algebraic thinking: Grades K - 12 (pp. 123-128). Reston, VA: National Council of Teachers of Mathematics.
- Hoffer, A. (1981). Geometry in more than proof. Mathematics Teacher, 74, 11-18.
- Kaput, J. (1995). Long term algebra reform: Democratizing access to big ideas. In C. Lacampagne, W. Blair, & J. Kaput (Eds.), The Algebra Initiative Colloquium (pp. 33-52). Washington, DC: U.S. Department of Education.
- Kieran, C. (1996). The changing face of school algebra. In 8th International Congress on Mathematical Education, Selected Lectures (pp. 271-286). S.A.E.M. THALES.
- Mason, J. H. (2002). Generalisation and algebra: Exploiting children's powers. In L. Haggerty (Ed.), Aspects of teaching secondary mathematics: Perspectives on practice (pp.105-120). London: RoutledgeFalmer.
- Merriam, S. B. (1998). Qualitative research and case study applications in education. San Francisco, CA: Jossey-Bass.
- Mitchelmore, M. (1993). Abstraction, generalization and conceptual change in mathematics. Hiroshima Journal of Mathematics Education, 2, 45-57.
- Mitchelmore, M. C., & White P. (1995). Abstraction in mathematics: Conflict, resolution and application. Mathematics Education Research Journal, 7, 50-68. https://doi.org/10.1007/BF03217275
- Mitchelmore, M. C., & White P. (1999). Learning mathematics: A new look at generalisation and abstraction. Referred paper at the combined conference of the Australian and New Zealand Associations for Research in Education, Australia.
- Moore, K. C., & Carlson, M. P. (2012). Students’ images of problem contexts when solving applied problems. The journal of Mathematical Behavior, 31(1), 48-59. https://doi.org/10.1016/j.jmathb.2011.09.001
- National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
- Saldanha, L. A., & Thompson, P. W. (1998). Re-thinking co-variation from a quantitative perspective: Simultaneous continuous variatin. In S. B. Berensen &, K. R. Dawkins, M. Blanton, W. N. Coulombe, J. Kolb, K. Norwood, & L. Stiff(Eds.), Proceedings of the 20th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 298-303). Columbus, OH: ERIC Clearinghouse for Science, Mathematics, and Environmental Education.
- Schoenfeld, A. H. & Arcavi, A. (1988). On the meaning of variable. Mathematics Teacher, 81, 420-427.
- Smith, J., & Thompson, P. W. (2007). Quantitative reasoning and the development of algebraic reasoning. In J. J. Kaput, D. W. Carraher & M. L. Blanton (Eds.), Algebra in the early grades (pp. 95-132). New York: Erlbaum.
- Steffe, L., & Izsak, A. (2002). Pre-service middle-school teachers' construction of linear equation concepts through quantitative reasoning. In D. Mewborn, P. Sztajn, D. White, H. Wiegel, R. Bryant, & K. Noony (Eds.), Proceedings of the Twenty-Fourth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 1163-1172). Columbus, OH: ERIC Clearinghouse for Science, Mathematics, and Environmental Education.
- Thompson, P. W. (1989). A cognitive model of quantity-based algebraic reasoning. Paper presented at the annual meeting of the American Educational Research Association.
- Thompson, P. W. (1994). The development of the concept of speed and its relationship to concepts of rate. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 181-234). Albany, NY: SUNY Press.
- Thompson, P. W. (2016). Researching mathematical meanings for teaching. In English, L., & Kirshner, D. (Eds.), Handbook of international research in mathematics education (pp. 435-461). London: Taylor and Francis.
- Thompson, P. W., Hatfield, N., Joshua, S., Yoon, H., & Byerley, C. (2017). Covariational reasoning among U.S. and South Korean secondary mathematics teachers. The Journal of Mathematical behavior, 48, 95-111. https://doi.org/10.1016/j.jmathb.2017.08.001
- Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 421-456). Reston, VA: National Council of Teachers of Mathematics.
- Usiskin, Z. (1988). Conceptions of school algebra and uses of variable. In A. F. Coxford & A. P. Shulte (Eds.), The ideas of algebra, K-12 (1988 Yearbook of the National Council of Teachers of Mathematics, pp. 8-19). Reston, VA: NCTM.