• 제목/요약/키워드: (quasi-)projective

검색결과 24건 처리시간 0.01초

ON CONFORMAL AND QUASI-CONFORMAL CURVATURE TENSORS OF AN N(κ)-QUASI EINSTEIN MANIFOLD

  • Hosseinzadeh, Aliakbar;Taleshian, Abolfazl
    • 대한수학회논문집
    • /
    • 제27권2호
    • /
    • pp.317-326
    • /
    • 2012
  • We consider $N(k)$-quasi Einstein manifolds satisfying the conditions $C({\xi},\;X).S=0$, $\tilde{C}({\xi},\;X).S=0$, $\bar{P}({\xi},\;X).C=0$, $P({\xi},\;X).\tilde{C}=0$ and $\bar{P}({\xi},\;X).\tilde{C}=0$ where $C$, $\tilde{C}$, $P$ and $\bar{P}$ denote the conformal curvature tensor, the quasi-conformal curvature tensor, the projective curvature tensor and the pseudo projective curvature tensor, respectively.

CERTAIN DISCRIMINATIONS OF PRIME ENDOMORPHISM AND PRIME MATRIX

  • Bae, Soon-Sook
    • East Asian mathematical journal
    • /
    • 제14권2호
    • /
    • pp.259-268
    • /
    • 1998
  • In this paper, for a commutative ring R with an identity, considering the endomorphism ring $End_R$(M) of left R-module $_RM$ which is (quasi-)injective or (quasi-)projective, some discriminations of prime endomorphism were found as follows: each epimorphism with the irreducible(or simple) kernel on a (quasi-)injective module and each monomorphism with maximal image on a (quasi-)projective module are prime. It was shown that for a field F, any given square matrix in $Mat_{n{\times}n}$(F) with maximal image and irreducible kernel is a prime matrix, furthermore, any given matrix in $Mat_{n{\times}n}$(F) for any field F can be factored into a product of prime matrices.

  • PDF

PURE-DIRECT-PROJECTIVE OBJECTS IN GROTHENDIECK CATEGORIES

  • Batuhan Aydogdu;Sultan Eylem Toksoy
    • 호남수학학술지
    • /
    • 제45권2호
    • /
    • pp.269-284
    • /
    • 2023
  • In this paper we study generalizations of the concept of pure-direct-projectivity from module categories to Grothendieck categories. We examine for which categories or under what conditions pure-direct-projective objects are direct-projective, quasi-projective, pure-projective, projective and flat. We investigate classes all of whose objects are pure-direct-projective. We give applications of some of the results to comodule categories.

𝒵 Tensor on N(k)-Quasi-Einstein Manifolds

  • Mallick, Sahanous;De, Uday Chand
    • Kyungpook Mathematical Journal
    • /
    • 제56권3호
    • /
    • pp.979-991
    • /
    • 2016
  • The object of the present paper is to study N(k)-quasi-Einstein manifolds. We study an N(k)-quasi-Einstein manifold satisfying the curvature conditions $R({\xi},X){\cdot}Z=0$, $Z(X,{\xi}){\cdot}R=0$, and $P({\xi},X){\cdot}Z=0$, where R, P and Z denote the Riemannian curvature tensor, the projective curvature tensor and Z tensor respectively. Next we prove that the curvature condition $C{\cdot}Z=0$ holds in an N(k)-quasi-Einstein manifold, where C is the conformal curvature tensor. We also study Z-recurrent N(k)-quasi-Einstein manifolds. Finally, we construct an example of an N(k)-quasi-Einstein manifold and mention some physical examples.

A DECOMPOSITION THEOREM FOR UTUMI AND DUAL-UTUMI MODULES

  • Ibrahim, Yasser;Yousif, Mohamed
    • 대한수학회보
    • /
    • 제58권6호
    • /
    • pp.1563-1567
    • /
    • 2021
  • We show that if M is a Utumi module, in particular if M is quasi-continuous, then M = Q ⊕ K, where Q is quasi-injective that is both a square-full as well as a dual-square-full module, K is a square-free module, and Q & K are orthogonal. Dually, we also show that if M is a dual-Utumi module whose local summands are summands, in particular if M is quasi-discrete, then M = P ⊕ K where P is quasi-projective that is both a square-full as well as a dual-square-full module, K is a dual-square-free module, and P & K are factor-orthogonal.

MINIMAL QUASI-F COVERS OF REALCOMPACT SPACES

  • Jeon, Young Ju;Kim, Chang Il
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제23권4호
    • /
    • pp.329-337
    • /
    • 2016
  • In this paper, we show that every compactification, which is a quasi-F space, of a space X is a Wallman compactification and that for any compactification K of the space X, the minimal quasi-F cover QFK of K is also a Wallman compactification of the inverse image ${\Phi}_K^{-1}(X)$ of the space X under the covering map ${\Phi}_K:QFK{\rightarrow}K$. Using these, we show that for any space X, ${\beta}QFX=QF{\beta}{\upsilon}X$ and that a realcompact space X is a projective object in the category $Rcomp_{\sharp}$ of all realcompact spaces and their $z^{\sharp}$-irreducible maps if and only if X is a quasi-F space.

GORENSTEIN QUASI-RESOLVING SUBCATEGORIES

  • Cao, Weiqing;Wei, Jiaqun
    • 대한수학회지
    • /
    • 제59권4호
    • /
    • pp.733-756
    • /
    • 2022
  • In this paper, we introduce the notion of Gorenstein quasiresolving subcategories (denoted by 𝒢𝒬𝓡𝒳 (𝓐)) in term of quasi-resolving subcategory 𝒳. We define a resolution dimension relative to the Gorenstein quasi-resolving categories 𝒢𝒬𝓡𝒳 (𝓐). In addition, we study the stability of 𝒢𝒬𝓡𝒳 (𝓐) and apply the obtained properties to special subcategories and in particular to modules categories. Finally, we use the restricted flat dimension of right B-module M to characterize the finitistic dimension of the endomorphism algebra B of a 𝒢𝒬𝒳-projective A-module M.

ON GENERALIZED QUASI-CONFORMAL N(k, μ)-MANIFOLDS

  • Baishya, Kanak Kanti;Chowdhury, Partha Roy
    • 대한수학회논문집
    • /
    • 제31권1호
    • /
    • pp.163-176
    • /
    • 2016
  • The object of the present paper is to introduce a new curvature tensor, named generalized quasi-conformal curvature tensor which bridges conformal curvature tensor, concircular curvature tensor, projective curvature tensor and conharmonic curvature tensor. Flatness and symmetric properties of generalized quasi-conformal curvature tensor are studied in the frame of (k, ${\mu}$)-contact metric manifolds.