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Abstract. The object of the present paper is to study N(k)-quasi-Einstein manifolds. We

study an N(k)-quasi-Einstein manifold satisfying the curvature conditions R(ξ,X) ·Z = 0,

Z(X, ξ) ·R = 0, and P (ξ,X) · Z = 0, where R, P and Z denote the Riemannian curvature

tensor, the projective curvature tensor and Z tensor respectively. Next we prove that

the curvature condition C · Z = 0 holds in an N(k)-quasi-Einstein manifold, where C is

the conformal curvature tensor. We also study Z-recurrent N(k)-quasi-Einstein manifolds.

Finally, we construct an example of an N(k)-quasi-Einstein manifold and mention some

physical examples.

1. Introduction

A Riemannian or a semi-Riemannian manifold (Mn, g), n = dimM ≥ 2, is said
to be an Einstein manifold if the following condition

(1.1) S =
r

n
g

holds on M , where S and r denote the Ricci tensor and the scalar curvature of
(Mn, g) respectively. According to Besse ([3], p. 432), (1.1) is called the Einstein
metric condition. Einstein manifolds play an important role in Riemannian Ge-
ometry as well as in general theory of relativity. Also Einstein manifolds form a
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natural subclass of various classes of Riemannian or semi-Riemannian manifolds by
a curvature condition imposed on their Ricci tensor ([3], p. 432-433). For instance,
every Einstein manifold belongs to the class of Riemannian or semi-Riemannian
manifolds (Mn, g) realizing the following relation :

(1.2) S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a, b are smooth functions and η is a non-zero 1-form such that

(1.3) g(X, ξ) = η(X), g(ξ, ξ) = η(ξ) = 1

for all vector fields X.
A non-flat Riemannian or semi-Riemannian manifold (Mn, g) (n > 2) is defined

to be a quasi Einstein manifold ([7]) if its Ricci tensor S of type (0, 2) is not iden-
tically zero and satisfies the condition (1.2). We shall call η the associated 1-form
and the unit vector field ξ is called the generator of the manifold.

Quasi Einstein manifolds arose during the study of exact solutions of the Ein-
stein field equations as well as during considerations of quasi-umbilical hypersurfaces
of semi-Euclidean spaces. Several authors have studied Einstein’s field equations.
For example, in [17], Naschie turned the tables on the theory of elementary par-
ticles and showed the expectation number of elementary particles of the standard
model using Einstein’s unified field equation. He also discussed possible connec-
tions between Gödel’s classical solution of Einstein’s field equations and E-infinity
in [16]. Also quasi-Einstein manifolds have some importance in the general the-
ory of relativity. For instance, the Robertson-Walker spacetimes are quasi Einstein
manifolds. Further, quasi Einstein manifold can be taken as a model of the perfect
fluid spacetime in general relativity [10]. Perfect fluid spacetimes in n-dimensions
subjected to the restriction ∇mCmjkl = 0, where C is the Weyl conformal curvature
tensor, recently investigated in [27] by Mantica, Molinari and De (see also [28]).

The study of quasi Einstein manifolds was continued by Chaki ([8]), Guha
([18]), De and Ghosh ([11, 12]), Bejan ([1]), Debnath and Konar ([14]) and many
others. The notion of quasi-Einstein manifolds have been generalized by several
authors in several ways such as generalized Einstein manifolds ([2]), generalized
quasi-Einstein manifolds ([4, 13]), mixed generalized quasi-Einstein manifolds[5]
and many others. In recent papers Özgür studied super quasi-Einstein manifolds
([32]) and generalized quasi-Einstein manifolds ([33]). Also Nagaraja ([29]) studied
N(k)-mixed quasi-Einstein manifolds.

Let R denote the Riemannian curvature tensor of a Riemannian manifold M .
The k-nullity distribution N(k) of a Riemannian manifold M ([36]) is defined by

N(k) : p −→ Np(k) = {Z ∈ TpM : R(X,Y )Z = k[g(Y,Z)X − g(X,Z)Y ]},

k being some smooth function. In a similar way we can define the k-nullity dis-
tribution N(k) of a Lorentzian manifold. In a quasi Einstein manifold M , if the
generator ξ belongs to some k-nullity distribution N(k), then M is said to be an
N(k)-quasi Einstein manifold ([30]). In fact k is not arbitrary as the following:
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Lemma 1 ([30]). In an n-dimensional N(k)-quasi Einstein manifold it follows that

(1.4) k =
a+ b

n− 1
.

Now, it is immediate to note that in an n-dimensional N(k)-quasi-Einstein man-
ifold ([30])

(1.5) R(X,Y )ξ =
a+ b

n− 1
[η(Y )X − η(X)Y ],

which is equivalent to

(1.6) R(X, ξ)Y =
a+ b

n− 1
[η(Y )X − g(X,Y )ξ] = −R(ξ,X)Y.

From (1.5) we get

(1.7) R(ξ,X)ξ =
a+ b

n− 1
[η(X)ξ −X].

In [30] it was shown that an n-dimensional conformally flat quasi Einstein mani-
fold is an N( a+bn−1 )-quasi Einstein manifold and in particular a 3-dimensional quasi

Einstein manifold is an N(a+b2 )-quasi Einstein manifold. Also in [31] Özgür, cited
some physical examples of N(k)-quasi Einstein manifolds. Recently, Taleshian and
Hosseinzadeh ([20, 35]), De, De and Gazi ([9]) studied some curvature conditions
on N(k)-quasi-Einstein manifold. All these motivated us to study such a manifold.

The conformal curvature tensor play an important role in differential geometry
and also in general theory of relativity. The Weyl conformal curvature tensor C of
a Riemannian manifold (Mn, g) (n > 3) is defined by

C(X,Y )Z = R(X,Y )Z − 1

n− 2
[g(Y,Z)QX − g(X,Z)QY

+S(Y,Z)X − S(X,Z)Y ]

+
r

(n− 1)(n− 2)
[g(Y,Z)X − g(X,Z)Y ](1.8)

where r is the scalar curvature and Q is the symmetric endomorphism of the tan-
gent space at each point corresponding to the Ricci tensor S, that is, g(QX,Y ) =
S(X,Y ). If the dimension n = 3, then the conformal curvature tensor vanishes
identically. The conformal curvature tensor have been studied by several authors
in several ways such as ([15, 19, 21, 22]) and many others.
The projective curvature tensor P in a Riemannian manifold (Mn, g) is defined by
([37])

(1.9) P (X,Y )W = R(X,Y )W − 1

n− 1
[S(Y,W )X − S(X,W )Y ],
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In 2012, Mantica and Molinari ([26]) defined a generalized (0,2) symmetric Z tensor
given by

(1.10) Z(X,Y ) = S(X,Y ) + φg(X,Y ),

where φ is an arbitrary scalar function. In Refs. [23], [26] and [24] various properties
of the Z tensor were pointed out.
The derivation conditions R(ξ,X) · R = 0 and R(ξ,X) · S = 0 have been studied
in [36], where R and S denote the curvature and Ricci tensor respectively. In
[30], the derivation conditions C̄(ξ,X) · R = 0 and C̄(ξ,X) · C̄ = 0 on N(k)-
quasi-Einstein manifold were studied, where C̄ is the concircular curvature tensor.
Moreover in [30], for an N(k)-quasi-Einstein manifold it was proved that k = a+b

n−1 .

Özgür in [31] studied the condition R · P = 0, P · S = 0 and P · P = 0 for
an N(k)-quasi-Einstein manifolds, where P denotes the projective curvature tensor
and some physical examples of N(k)-quasi-Einstein manifolds are given. Again,
in 2008, Özgür and Sular ([34]) studied N(k)-quasi-Einstein manifold satisfying
R · C = 0 and R · C̃ = 0, where C and C̃ represent the conformal curvature tensor
and the quasi-conformal curvature tensor, respectively. Recently, Yildiz, De and
Cetinkaya ([38]) studied quasi-conformally recurrent N(k)-quasi-Einstein manifold.
This paper is a continuation of the previous studies.

The paper is organized as follows:
After preliminaries in Section 3, we study an N(k)-quasi-Einstein manifold satisfying
the curvature condition R(ξ,X) ·Z = 0. In the next two sections, we study an N(k)-
quasi-Einstein manifold satisfying Z(X, ξ) ·R = 0, and P (ξ,X) ·Z = 0 respectively.
Section 6 deals with the nature of the curvature condition C · Z = 0 in an N(k)-
quasi-Einstein manifold. We study Z-recurrent N(k)-quasi-Einstein manifolds in
Section 7. Finally, we give some examples of N(k)-quasi-Einstein manifolds.

2. Preliminaries

From (1.2) and (1.3) it follows that

r = an+ b and QX = aX + bη(X)ξ,

S(X, ξ) = k(n− 1)η(X),

where r is the scalar curvature and Q is the Ricci operator.
In an n-dimensional N(k)-quasi-Einstein manifold M, the generalized Z tensor takes
the form

(2.1) Z(X,Y ) = (a+ φ)g(X,Y ) + bη(X)η(Y ),

and scalar Z takes the form

(2.2) Z = (a+ φ)n+ b.
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Also,

(2.3) Z(ξ, Y ) = (a+ b+ φ)η(Y ).

Also the projective curvature tensor P in an n-dimensional N(k)-quasi-Einstein
manifold satisfies the following relations:

(2.4) P (X,Y )ξ = 0,

(2.5) P (ξ,X)Y =
b

n− 1
[g(X,Y )ξ − η(X)η(Y )ξ],

(2.6) η(P (X,Y )U) =
b

n− 1
[g(Y, U)η(X)− g(X,U)η(Y )],

for all vector fields X, Y , U on M .
Again in an n-dimensional N(k)-quasi-Einstein manifold M, the conformal curvature
tensor C satisfies

(2.7) C(X,Y )Z = − b

n− 2
[η(Y )η(Z)X − η(X)η(Z)Y ],

(2.8) C(X,Y )ξ = − b

n− 2
[η(Y )X − η(X)Y ],

(2.9) η(C(X,Y )Z) = 0,

(2.10) η(C(X,Y )ξ) = 0,

(2.11) C(ξ, Y )Z = − b

n− 2
[η(Y )η(Z)ξ − η(Z)Y ],

for all vector fields X, Y , Z on M.

3. N(k)-Quasi-Einstein Manifold Satisfying R(ξ,X) · Z = 0

Let us suppose that the manifold (Mn, g) be an N(k)-quasi-Einstein manifold.
Then the condition R(ξ,X) · Z = 0 gives

(3.1) Z(R(ξ,X)Y, ξ) + Z(Y,R(ξ,X)ξ) = 0.

In view of (1.6) and (2.1) we get

(3.2) Z(R(ξ,X)Y, ξ) = k(a+ b+ φ)[g(X,Y )− η(X)η(Y )].
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Also, in view of (1.7) and (2.1) we obtain

(3.3) Z(Y,R(ξ,X)ξ) = k(a+ φ)[η(X)η(Y )− g(X,Y )].

Thus equations (3.1), (3.2) and (3.3) together give

(3.4) bk[g(X,Y )− η(X)η(Y )] = 0.

Since in a quasi-Einstein manifold b 6= 0, therefore, either k = 0 or, g(X,Y ) =
η(X)η(Y ). In the second case, from (1.2) it follows that the manifold becomes an
Einstein manifold. This is a contradiction. Thus we have k = 0, that is, a + b =
0. Conversely, if k = 0, then in view of (1.6) and (1.7) the manifold satisfies
R(ξ,X) · Z = 0.

Thus we can state the following:

Theorem 3.1. An N(k)-quasi-Einstein manifold (Mn, g) satisfies the condition
R(ξ,X) · Z = 0 if and only if a+ b = 0.

4. N(k)-Quasi-Einstein Manifold Satisfying Z(X, ξ) ·R = 0

In this section we consider an n-dimensional N(k)-quasi-Einstein manifold
(Mn, g) satisfying the condition

(4.1) (Z(X, ξ) ·R)(U, V )W = 0.

Now we have

(Z(X, ξ) ·R)(U, V )W = ((X∧Z
ξ) ·R)(U, V )W,

where the endomorphism (X∧Z
U)V is defined by

(X∧Z
U)V = Z(U, V )X − Z(X,V )U.

Then

(Z(X, ξ) ·R)(U, V )W = ((X∧Z
ξ)R)(U, V )W −R((X∧Z

ξ)U, V )W

−R(U, (X∧Z
ξ)V )W −R(U, V )(X∧Z

ξ)W.(4.2)

Then from (4.1) and (4.2) we have

Z(ξ,R(U, V )W )X − Z(X,R(U, V )W )ξ − Z(ξ, U)R(X,V )W

+Z(X,U)R(ξ, V )W − Z(ξ, V )R(U,X)W + Z(X,V )R(U, ξ)W

−Z(ξ,W )R(U, V )X + Z(X,W )R(U, V )ξ = 0.(4.3)

Using (1.5), (1.6) and (2.1) in (4.3) and then taking inner product with ξ, we obtain

(4.4) bk[g(X,U)η(V )η(W )− g(X,V )η(U)η(W )] = 0.
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Putting V = ξ in (4.4) we get

(4.5) bkη(W )[g(X,U)− η(X)η(U)] = 0.

Since in a quasi-Einstein manifold b 6= 0, the 1-form η is non-zero and g(X,U) −
η(X)η(U) 6= 0, from equation (4.5) it follows that k = 0. Again, if we take k = 0,
then the converse is trivial.

Thus we can state the following:

Theorem 4.1. An n-dimensional N(k)-quasi-Einstein manifold (Mn, g) satisfies
the condition Z(X, ξ) ·R = 0 if and only if a+ b = 0.

Therefore, by the Theorems 3.1 and 4.1 we can state the following corollary:

Corollary 4.1. Let (Mn, g) be an n-dimensional N(k)-quasi-Einstein manifold.
Then the following statements are equivalent:

(i) R(ξ,X) · Z = 0,

(ii) Z(X, ξ) ·R = 0,

(iii) a+ b = 0,

for every vector field X on (Mn, g).

5. N(k)-Quasi-Einstein Manifold Satisfying P (ξ,X) · Z = 0

In this section we consider an n-dimensional N(k)-quasi-Einstein manifold
(Mn, g) satisfying the condition

(5.1) P (ξ,X) · Z = 0.

From the condition P (ξ,X) · Z = 0, we get

(5.2) Z(P (ξ,X)Y,U) + Z(Y, P (ξ,X)U) = 0,

which in view of (2.5) gives

b

n− 1
[g(X,Y )Z(ξ, U)− η(X)η(Y )Z(ξ, U) + g(X,U)Z(Y, ξ)

−η(X)η(Y )Z(Y, ξ)] = 0.(5.3)

Since b 6= 0, using (2.3) we obtain

(5.4) (a+ b+ φ)[g(X,Y )η(U) + g(X,U)η(Y )− 2η(X)η(Y )η(U)] = 0,

which gives a+ b+ φ = 0.
Thus we can state the following:

Theorem 5.1. Let M be an n-dimensional N(k)-quasi-Einstein manifold. Then M
satifies the condition P (ξ,X) · Z = 0 if and only if a+ b+ φ = 0.
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6. The Nature of the Curvature Condition C · Z = 0 in an N(k)-Quasi-
Einstein Manifold

In this section we consider an n-dimensional N(k)-quasi-Einstein manifold
(Mn, g) satisfying the condition

(6.1) (C(X,Y ) · Z)(U, V ) = −Z(C(X,Y )U, V )− Z(U,C(X,Y )V ).

Using (1.10) and (1.2) in (6.1) we get

(C(X,Y ) · Z)(U, V ) = −ag(C(X,Y )U, V )− bη(C(X,Y )U)η(V )

−ag(U,C(X,Y )V )− bη(U)η(C(X,Y )V )

−φg(C(X,Y )U, V )− φg(U,C(X,Y )V ),(6.2)

from which we obtain

(6.3) (C(X,Y ) · Z)(U, V ) = −b[η(C(X,Y )U)η(V ) + η(C(X,Y )V )η(U)].

Using (2.9) in (6.3) we get

(C(X,Y ) · Z)(U, V ) = 0.

Hence we can state the following:

Theorem 6.1. In an n-dimensional N(k)-quasi-Einstein manifold (Mn, g), the
relation C · Z = 0 holds for all vector fields X, Y , U , V on (Mn, g).

7. Z-Recurrent N(k)-Quasi-Einstein Manifolds

A non-flat Riemannian or semi-Riemannian manifold (Mn, g) is said to be a
Z-recurrent manifold ([25]) if its Z tensor satisfies the condition

(7.1) (∇XZ)(U, V ) = η(X)Z(U, V ),

where η is a non-zero 1-form.
We have

(7.2) (∇XZ)(U, V ) = XZ(U, V )− Z(∇XU, V )− Z(U,∇XV ).

Using (7.1) and (7.2) we get

(7.3) XZ(U, V )− Z(∇XU, V )− Z(U,∇XV ) = η(X)Z(U, V ).

Putting U = V = ξ in (7.3) we obtain

(a+ b+ φ)η(X) = X(a+ b+ φ).

Thus we can state the following:
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Theorem 7.1. If (Mn, g) is a Z-recurrent N(k)-qusi-Einstein manifold, then

(a+ b+ φ)η(X) = X(a+ b+ φ),

for all X ∈ TM .

A Z-recurrent manifold is Z-symmetric if and only if the 1-form η is zero. Thus
we have the following corollaries:

Corollary 7.2. If (Mn, g) is a Z-symmetric N(k)-quasi-Einstein manifold, then
a+ b+ φ is constant.

Corollary 7.3. If (Mn, g) is a Z-recurrent N(k)-quasi-Einstein manifold and if
a+ b+φ is constant, then either a+ b+φ = 0 or (Mn, g) reduces to a Z-symmetric
N(k)-quasi-Einstein manifold.

8. Example of N(k)-Quasi Einstein Manifolds

Let us consider a Riemannian metric g on R4 by

(8.1) ds2 = gijdx
idxj = (1 + 2q)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2],

where q = ex
1

k2 and k is a non-zero constant, (i, j = 1, 2, 3, 4). Then the only
non-vanishing components of the Christoffel symbols and the curvature tensors are:

Γ1
11 = Γ2

12 = Γ3
13 = Γ4

14 =
q

1 + 2q
, Γ1

22 = Γ1
33 = Γ1

44 = − q

1 + 2q
,

R1221 = R1331 = R1441 =
q

1 + 2q
,

R2332 = R2442 = R3443 =
q2

1 + 2q

and the components obtained by the symmetry properties. The non-vanishing com-
ponents of the Ricci tensors are:

R11 =
3q

(1 + 2q)2
, R22 = R33 = R44 =

q

1 + 2q
.(8.2)

It can be easily shown that the scalar curvature r of the resulting space (R4, g) is

r = 6q(1+q)
(1+2q)3 , which is non-vanishing and non-constant. Now we shall show that this

(R4, g) is an N(k)-quasi-Einstein manifold.
To show that the manifold under consideration is an N(k)-quasi-Einstein man-

ifold, let us choose the scalar functions a, b and the 1-form η as follows:

(8.3) a =
q

(1 + 2q)2
, b =

2q(1− q)
(1 + 2q)3

,
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(8.4) ηi(x) =

{ √
1 + 2q for i=1

0 otherwise,

at any point x ∈ R4. Now the equation (1.2) reduces to the equations

(8.5) R11 = ag11 + bη1η1,

(8.6) R22 = ag22 + bη2η2

(8.7) R33 = ag33 + bη3η3,

and

(8.8) R44 = ag44 + bη4η4,

since, for the other cases (1.2) holds trivially. By (8.3) and (8.4) we get

R.H.S. of (8.5) = ag11 + bη1η1

=
q

(1 + 2q)2
(1 + 2q) +

2q(1− q)
(1 + 2q)3

(1 + 2q)

=
3q

(1 + 2q)2
= R11

= L.H.S. of (8.5).

By similar argument it can be shown that (8.6), (8.7) and (8.8) are also true. So,
(R4, g) is an N( q

(1+2q)3 )-quasi-Einstein manifold.

9. Physical Examples of N(k)-Quasi-Einstein Manifolds

Example 9.1. This example is concerned with example of an N(k)-quasi-Einstein
manifold in general relativity by the coordinate free method of differential geometry.
In this method of study the spacetime of general relativity is regarded as a connected
four-dimensional semi-Riemannian manifold (M4, g) with Lorentzian metric g with
signature (−,+,+,+). The geometry of the Lorentzian manifold begins with the
study of causal character of vectors of the manifold. It is due to this causality
that the Lorentzian manifold becomes a convenient choice for the study of general
relativity.
An n-dimemsional Riemannian or semi-Riemannian manifold (Mn, g), (n > 3) is
said to be pseudo Ricci symmetric manifold[6] if its Ricci tensor S of type (0,2) is
not identically zero and satisfies the condition

(∇XS)(Y,Z) = 2A(X)S(Y, Z) +A(Y )S(X,Z) +A(Z)S(X,Y ),(9.1)

where A is a non-zero 1-form defined by

g(X,U) = A(X),
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for all X. Such a manifold is denoted by (PRS)n.
Here we consider a perfect fluid (PRS)4 spacetime with non-zero scalar curvature
and having the basic vector field U as the timelike vector field of the fluid, that is,
g(U,U) = −1. In a recent paper[9] De et al. prove the following:

A perfect fluid pseudo Ricci symmetric spacetime with non-zero scalar curvature is
an N( 2r

9 )-quasi-Einstein manifold.

Example 9.2([31]). A conformally flat perfect fluid spacetime (M4, g) satisfying

Einstein’s equation without cosmological constant is an N(k(3σ+p)6 )-quasi-Einstein
manifold.

Example 9.3([31]). A conformally flat perfect fluid spacetime (M4, g) satisfying

Einstein’s equation with cosmological constant is an N(λ3 + k(3σ+p)
6 )-quasi-Einstein

manifold, where k is the gravitational constant, σ is the energy density and p is the
isotropic pressure of the fluid.

Acknowledgement. The authors are thankful to the reviewer for careful reading
of the manuscript and his/her thoughtful comments for the improvement of the
paper.
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