CERTAIN DISCRIMINATIONS OF PRIME ENDOMORPHISM AND PRIME MATRIX

Soon-Sook Bae

Abstract

In this paper, for a commutative ring R with an identity, considering the endomorphism ring $E n d_{R}(M)$ of left R-module R^{M} which is (quasz-) injective or (quasz-)projective, some discriminations of prime endomorphism were found as follows each epimorphism with the arreducible(or simple) kernel on a (quasi-) injectrve module and each monomorphism with maximal mage on a (quasz)projectrve module are prime It was shown that for a field F, any given square matrix in $\operatorname{Mat}_{n \times n}(F)$ with maximal image and $\imath r r e-$ ducible kernel is a prime matrix, furthermore, any given matrix in $M a t_{n \times n}(F)$ for any field F can be factored into a product of prime matrices.

1. Introduction

Let R be a commutative ring with an identity and let R^{n} be the direct product of n-copies of R, for any natural number n.

From the elementary linear algebras, it is well-known that there is an R-linear mapping between the set $M a t_{m \times n}(R)$ of all $m \times n-$ matrices and the set $\operatorname{Hom}_{R}\left(R^{n}, R^{m}\right)$ of all linear mappings from R^{n} into R^{m}, where $n, m \in N$ are any natural numbers. In this paper the fact that between $\operatorname{Hom}_{R}\left(R^{n}, R^{m}\right)$ and ($\left.M a t_{m \times n}(R)\right)^{t}$ there is an R-linear mapping too, where t stands for the transpose operator is mostly used. In other words, for an element $\left(r_{1}, r_{2}, \cdots, r_{n}\right) \in R^{n}$,

[^0]\[

\left($$
\begin{array}{llll}
r_{1} & r_{2} & \cdots & r_{n}
\end{array}
$$\right)\left($$
\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
\cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}
$$\right)=\left(r_{1}, r_{2}, \cdots, r_{n}\right) f
\]

f and $\left(a_{r j}\right)_{n \times m}$ act on the right side of R^{n} for the associated matrix $\left(a_{2 \jmath}\right)_{n \times m}$ with f, denoted by $\operatorname{Mat}(f)$. A module ${ }_{R} M$ is said to be R-quasi-projective(R-quasi-injective, resp.) if for each epimorphism $g:{ }_{R} M \rightarrow{ }_{R} N$ (for each-monomorphism $f:{ }_{R} K \rightarrow{ }_{R} M$, resp.) and for each homomorphism $\gamma:{ }_{R} M \rightarrow{ }_{R} N\left(\gamma:{ }_{R} K \rightarrow{ }_{R} M\right.$, resp. $)$ there is an R-homomorphism such that $\bar{\gamma}:{ }_{R} M \rightarrow{ }_{R} M$ such that $\gamma=\bar{\gamma} g\left(\gamma:{ }_{R} M \rightarrow{ }_{R} M\right.$ such that $\gamma=f \bar{\gamma}$, resp. $)$.

Recall that R^{k} is an R-(quasi-)injective and (quasi-)projective module for any natural number $k \in \mathbb{N}$. Because we are studying left $R-$ modules ${ }_{R} M$, conveniently let the compositions of all mappings be written by the reverse order, in the order as follows:

$$
g h:{ }_{R} K \xrightarrow{g}{ }_{R} M \xrightarrow{h}{ }_{R} N
$$

Lemma 1.1. Every monomorphism on any left R-(quasi-) rnjective module ${ }_{R} M$ is right invertible in $\operatorname{End}_{R}(M)$.

Proof. In the definition of an R-(quasi-)injective, replacing ${ }_{R} K$ by ${ }_{R} M$ and γ by the identity on ${ }_{R} M$, the proof is established immediately.

Lemma 1.2. Every epimorphism on any left R-(quasz-) projective module $_{R} M$ is left invertible in $\operatorname{End}_{R}(M)$.

Proof. In the definition of an R-(quasi-) projective, replacing ${ }_{R} N$ by ${ }_{R} M$ and γ by the identity on ${ }_{R} M$, the proof is established immediately.

For the reason of the following definition, it will be answered partly in Remark 2.7.

An endomorphism g is said to be left retractable in $\operatorname{End}_{R}(M)$ if there is an endomorphism $g^{\prime} \in \operatorname{End}_{R}(M)$ such that the restriction $\left.g^{\prime} g\right|_{\text {Img }}$ of the composition $g^{\prime} g$ of g^{\prime} and g to the image $I m g$ of g is the identity of the image of g, that is, $\left.{ }^{g^{\prime} g}\right|_{\text {Img }}=1_{\text {Img }}$ the identity endomorphism on $\operatorname{Img} \leq M$.

Definition 1.3. For a non-unit endomorphism p of the endomorphism ring $S=E n d_{R}(M), p$ is said to be prime if $p=f g$ for $f, g \in S$, then f is right invertible or g is left retractable in $E n d_{R}(M)$.

Two endomorphisms $f, g \in \operatorname{End}_{R}(M)$ are said to be similar if $\operatorname{Imf}=I m g \leq M$. This definition of the simularity of two $f, g \in$ $E n d_{R}(M)$ (with an n-dimension vector space ${ }_{F} M$ over a field $F=R$ having a fixed basis) is not the same as the similarity of two associated matrices $\operatorname{Mat}(f), \operatorname{Mat}(g)$ in $M a t_{n \times n}(R)$ with f, g by Mat : $E n d_{R}(M) \rightarrow M a t_{n \times n}(R)$, i.e., not the same as the similarity of matrices in many general Linear Algebra books. Two endomorphisms $f, g \in \operatorname{End}_{R}(M)$ are said to be cosimilar if $\operatorname{ker} f=\operatorname{ker} g \leq M$.

2. Results

Any commutative ring R with an identıty and ${ }_{R} R^{k}$ are (quasi) injective (quasi-)projective module for any natural number n. By Lemmas 1.1 and 1.2, the following Theorems 2.1 and 2.2 are obtamed easily.

Theorem 2.1. All non-unit epimorphisms on any left R-(quası)projective module ${ }_{R} M$ are prime.

Theorem 22 . All non-unit monomorphisms on any left R - (quass) injectrve module ${ }_{R} M$ are prime.

A submodule $N \leq M$ is said to be irreducible (simple) if N has no non-zero submodule.

Proposition 2.3. For a left (quast-)projective module ${ }_{R} M$, if a monomorphism f in $\operatorname{End}_{R}(M)$ has the maximal image $\operatorname{Imf} \leq M$, then f is prime.

Proof. Suppose that $f=g h$ for some endomorphisms $g, h \in \operatorname{End}_{R}(M)$ - Then the maximal submodule $\operatorname{Imf}=I m g h \leq \operatorname{Imh}$ implies that $\operatorname{Imh}=M$ or $\operatorname{Imf}=I m h$. If $\operatorname{Imh}=M$, then h is left invertible in $\operatorname{End}_{R}(M)$ since M is (quasi-)projective. Hence h is left retractable. If $I m f=I m h$, then $h=s f$ and $f=t h$ for some $s, t \in \operatorname{End}_{R}(M)$ since M is (quasi-)projective. Thus $f=g h=g s f$ and $\left(1_{M}-g s\right) f=0$ follow, where 1_{M} denotes the identity mapping on M. Hence $\operatorname{Im}\left(1_{M}-g s\right) f=$

0 and $\operatorname{Im}\left(1_{M}-g s\right) \leq$ ker $f=0$ implies that $\operatorname{Im}\left(1_{M}-g s\right)=0$ and $1_{M}-g s=0$. Hence g is right invertible in $\operatorname{End}_{R}(M)$. Therefore f is prime.

Let a prime monomorphism denote a monomorphism with the maximal image on a (quasi-)projective module.

Propositon 2.4. For any left (quasi-)injective R-module ${ }_{R} M$, if an epimorphism f in $E n d_{R}(M)$ has the irreducible kernel ker $f \leq M$, then f is prime.

Proof. By the dual proof of the Proposition 2.3, it is proved.
Let a prime epimorphism denote an epimorphism with the irreducible
(simple) kernel on an (quasi-) injective module.
Corollary 2.5. For an endomorphism g and for any prime monomorphism $f_{\alpha} \in \operatorname{End}_{R}(M)$ with the (quasi-)projective module $R_{R} M$, if Img \leq $\cap_{\alpha} I m f_{\alpha}$, then f_{α} divides g for each α.

Proof. Suppose that $\operatorname{Im} f \leq \cap_{\alpha} \operatorname{Im} f_{\alpha}$ for some indexed $\left\{f_{\alpha}\right\}_{\alpha}$. Then the fact $\operatorname{Imf} \leq I m f_{\alpha}$, for each α implies that $f=s_{\alpha} f_{\alpha}$ for some $s_{\alpha} \in \operatorname{End}_{R}(M)$ and for each α since ${ }_{R} M$ is (quasi-)projective.

Corollary 2.6. For an endomorphism f and for any prime epimorphism $_{f_{\alpha}} \in \operatorname{End}_{R}(M)$ with (quasi-) injective module ${ }_{R} M$, if $\operatorname{ker} f \geq$ $\sum_{\alpha} \operatorname{ker} f_{\alpha}$, then f_{α} divides f for each α.

Remark 2.7. The definition of prime endomorphism (quasi-)injective and
(quasi-)projective module ${ }_{R} M$ if $\operatorname{End}_{R}(M)$ is commutative is the same as the definition of irreducible or prime elements of commutative rings.

Precisely, on a (quasi-)injective and (quasi-)projective module ${ }_{R} M$ each prime endomorphism f with $f=g h$ implies that g is a unit in $\operatorname{End}_{R}(M)$ or h is left retractable .

For a right invertible factor g of f, there is an $s \in E n d_{R}(M)$ such that $g s=1_{M}$. To show that $s g=1_{M}$, let's consider the following
diagram including monomorphism g and epimorphism s with the condition $g s=1_{M}$:

then there are endomorphisms $\alpha, \beta \in \operatorname{End}_{R}(M)$ such that $g=\alpha s$ and $s=g \beta$ since ${ }_{R} M$ is (quasi-)injective (quasi-)projective Clearly $\beta \alpha=1_{M}$. And hence $s g=(g \beta)(\alpha s)=g(\beta \alpha) s=g s=1_{M}$ follows Therefore g is a unt. Thus if $E n d_{R}(M)$ is commutative, and if a prome endomorphism f has a product $f=g h=h g$, then one of g and h is at least a unit in $E n d_{R}(M)$.

From the above Corollaries 2.5 and 2.6 it isn't told in general that f has a factorization in terms of the prime epimorphisms or the prime monomorphisms. It depends on the first left endomorphism and on the last right endomorphism. In other words, if $f=s p_{\alpha}\left(\right.$ or $f=p_{\alpha} t$) for some prime epimorphism or prime monomorphism p_{α}. Then we must try to factor out s (or t) and so on, respectively

Proposition 2.8. For a left (quasi-)injective and (quasi-) projective module ${ }_{R} M$, if a non-unit endomorphism f has the maximal image Imf $\leq M$ and the $\begin{aligned} \text { rreducıble(simple) kernel } \operatorname{ker} f \leq M \text {. Then } f \text { is } \\ \text { s }\end{aligned}$ prime.

Proof. Suppose that $f=g h$ with Img \cap ker $h \neq 0$ or with Img \cap $\operatorname{ker} h=0$. Then $\operatorname{ker} g \leq \operatorname{ker} f=g^{-1}(\operatorname{ker} h)$ the preimage of ker h under g implies that ker $g=0$ from Img $\cap \operatorname{ker} h \neq 0$. Or we have a case of $\operatorname{Img} \cap \operatorname{ker} h=0$ with $f=g h$. If $\operatorname{Imp} \geqslant \operatorname{Imh}=M$, the retractabality of h follows immediately. Hence we assume that $\operatorname{Imh}=\operatorname{Imp} \leq M$ is proper in M.

We have a monomorphism g which is right invertible in $E n d_{R}(M)$ for the first case. For the case of $\operatorname{Img} \cap \operatorname{ker} h=0$, if $\operatorname{ker} h \neq 0$ we have a submodule $I m g \oplus \operatorname{ker} h \leq M$. Then $I m f \simeq I m g \simeq I m h$ follows
from $\operatorname{ker} f=\operatorname{ker} g$ and $I m h=I m p$, where the symbol \simeq denotes the isomorphic. Hence h is left retractable on Imh through the extendable isomorphisms on a left (quasi-)injective and (quasi-)projective module ${ }_{R} M$.

If $\operatorname{ker} h=0$, it follows that a monomorphism h (which is a unit since ${ }_{R} M$ is a left (quasi-)injective and (quasi-)projective module) is left retractable on $I m h \leq M$. Therefore f is a prime endomorphism.

3. Applications

Remind that the ring R is assumed to be a commutative ring with an identity. Here $R^{n}=\prod_{1}^{n} R$ denotes the product of $\left\{R_{\imath}\right\}_{1 \leq i \leq n}$ with $R_{r}=R$ and $R^{(n)}$ denotes the direct product of n-copies of R. Recall the linear algebra theory: there is an R-linear mapping between the set of all linear mappings from an n-dimensional vector space ${ }_{F} U$ into the m-dimensional vector space ${ }_{F} V$ and the set $M a t_{n \times m}(R)=\left(M a t_{m \times n}(R)\right)^{t}$ of $n \times m-$ matrices whose entries are in R where t denotes the transpose operator. For any field F with identity 1 , the following should be noticed:
(1) Every maximal submodule of $F^{(n)}$ is the direct product $F^{(n-1)}$ and every urreducible(simple) submodule of $F^{(n)}$ is the direct product $F^{(1)}$.
(2) The direct product $F^{(n)}$ of n-copies of any field F is (quasz)injectuve and (quasi-)projective for any n, moreover $F^{(n)}$ is self-generated and self-cogenerated.
(3) Hereafter we assume that each k-dimensional space $F F^{k}$ has the standard orthogonal basis

$$
\left\{e_{2}=\left(x_{1}, \cdots, x_{k}\right) \mid x_{\imath}=1, x_{3}=0, \text { for } j \neq i, 1 \leq i, j \leq k\right\}
$$ for each natural number $k \in \mathbb{N}$.

(4) It is important to remember that every monomorphism and every epımorphism from F^{k} into itself F^{k} are automorphisms for every $k \in \mathbb{N}$.
Briefly and conveniently, let's replace the associated linear mapping $L(A)$ by A properly.

APPLICATION 3.1. Let $A=\left(a_{\imath \jmath}\right) \in M a t_{n \times n}(F)$ be a matrix with the maximal image $\operatorname{Im} A=F^{(n-1)}$ and the irreducible(simple) kernel
$\operatorname{ker} A=F^{(1)}$. Then A is a prime matrix. Furthermore every similar cosimilar matrix to the above matrix $\left(a_{\imath \jmath}\right)_{n \times n}$ is also prime.

Proof. For any epic or monic matrix U, the associated linear mapping
$L(U): F^{n} \rightarrow F^{n}$ the (quasi-) injective (quasi-)projective n-dimensional vector space F^{n} over F is an automorphism. Hence each monic matrix and each epic matrix are units. Thus the Proposition 2.8 can apply here to the matrix ring $M a t_{n \times n}(F)$. Hence we have immediately a prime matrix A with the maximal image and the irreducible kernel.

For example, let $A=\left(a_{\imath \jmath}\right) \in M a t_{n \times n}(F)$ be a matrix such that

$$
\begin{aligned}
& \left\{\begin{array}{l}
a_{j \jmath}=1, \text { for } 1 \leq j \leq n \\
a_{1 k}=a_{k 1}=-1, \text { for the only one } k, 1 \leq k \leq n, \\
a_{2 j}=0, \text { if } i \neq \jmath \neq k .
\end{array}\right.
\end{aligned}
$$

For this matrix $\left(a_{i j}\right)_{n \times n}, A=\left(a_{i j}\right)_{n \times n}$ is an endomorphism with the maximal image

$$
\begin{aligned}
\operatorname{Im} A & =\left\{\left(x_{1}, \cdots, x_{k}, \cdots, x_{n}\right) \mid x_{1}=-x_{k}, x_{i} \in F\right\} \\
& =F^{(n-1)}
\end{aligned}
$$

and the irreducible(simple) kernel
$\operatorname{ker} A=F^{(1)}$

$$
=\left\{\left(a_{1}, 0, \cdots, 0, a_{k}, 0, \cdots, 0\right) \mid a_{1}=a_{k}, a_{2}=0 \text { for } \imath \neq k, 1 \leq \imath \leq n\right\}
$$

Corollary 3.2. For any matrix $A=\left(a_{2 j}\right)_{n \times n} \in \operatorname{Mat}_{n \times n}(F)$ with a field F and for any prime matrix $P_{\alpha}=\left(p_{2 \jmath}\right)_{\alpha} \in \operatorname{Mat}_{n \times n}(F)$, if
$\operatorname{Im} A \leq \cap \operatorname{Im} P_{\alpha}$ and if $\operatorname{ker} A \geq \sum_{\alpha} \operatorname{ker} P_{\alpha}$, then P_{α} divides A for each α.

Recalling the item (3) above the Application 3.1, we only consider the standard orthogonal bases of all F^{k}. Then the following are obtained by the associate Mat preserving composition of linear mappings, that is,
$\operatorname{Mat}(f g)=\operatorname{Mat}(f) \operatorname{Mat}(g)$.
Application 3.3. For $n \in N$ and for any field F with an identity 1, if $f: F^{n} \rightarrow F^{n}$ is a prime endomorphism, then the associated matrix $\operatorname{Mat}(f)$ is a prime matrix. Clearly if a square matrix is prime, then its associated linear mapping is also a prime endomorphism.

For two matrices A, C, we call A an edge factor of C if $C=A B \cdots H$ or $C=H \cdots B A$ for some matrices B, \cdots, H.

Remark 3.4. For two square matrices $A, B \in M a t_{n \times n}(F)$, the following are to be read about similar matrices :
(1) If A, B are simular in the sense of Linear Algebra, i.e., there is a unit matrix $N \in M a t_{n \times n}(F)$ such that $A=N^{-1} B N$. Then A is prime if and only if B is prime. However A and B need not be, in general, similar cosimilar in the sense of this paper.
(2) For A, B as in (1) and for $C \in M a t_{n \times n}(F), A$ is a factor of C if and only if B is a factor of C, however for an edge factor A of C, B need not be an edge factor of C in general.
(3) Moreover for sumilar cosimilar matrices $A, B \in \operatorname{Mat}_{n \times n}(F), A$ is prime if and only if B is prime.
(4) If A, B are simular cosimilar and $C \in M a t_{n \times n}(F)$. Then A is a factor, or an edge factor of C if and only if B is a factor, or an edge factor of C, respectively.

A Method of Factorizing a square Matrix. There might be lots of different ways to factorize any given square matrix $A \in$ $M a t_{n \times n}(F)$.
(1) Find prime square matrices P_{α} such that $\cap \operatorname{Im} P_{\alpha} \geq \operatorname{Im} A$ and ker $A \geq \sum \operatorname{ker} P_{\alpha}$.
(2) Select one $P_{\alpha_{0}}$ of the prime matrices P_{α}.
(3) Find a factor matrix $F_{\alpha_{0}}$ such that $A=F_{\alpha_{0}} P_{\alpha_{0}}$ or $A=$ $P_{\alpha_{0}} F_{\alpha_{0}}$.
(4) Do the step (1) for the factor matrix $F_{\alpha_{0}}$.
(5) After the steps (1) and (4), go to the steps (1) and (4).
(6) Select those factors of A and write them properly.

For further applications of prime matrices with distinct size n by m for $n \neq m$, here some illustrations are given.
(1) For $n \leq m$ and a monomorphism $f: F^{n} \rightarrow F^{m}$, let $k=m-n$ and let partitionize the associated matrix $\operatorname{Mat}(f)$ by k by k, that is, $(\operatorname{Mat}(f))=\left(\begin{array}{ll}F_{11} & F_{12}\end{array}\right) \quad$, where $F_{11} \in M_{k \times k}$ and $F_{12} \in M a t_{k \times n}$. Then we have a prime matrix $P \in \operatorname{Mat}_{m \times m}(F)$, precisely
$P=\left(\begin{array}{ll}F_{11} & F_{12} \\ D_{k k} & 0_{n n}\end{array}\right)$ where $D_{k k}=\left(d_{23}\right)_{k \times k}$ with $d_{\imath \jmath}=\left\{\begin{array}{c}0 \text { if } \imath=j=l \text { for only one } l, 1 \leq l \leq k \\ \delta_{23} \text { elsewhere, for the Kronecker's delta } \delta_{23}\end{array}\right.$, and where $0_{n n}$ is the zero matrix. This matrix $P=\left(\begin{array}{ll}F_{11} & F_{12} \\ D_{k k} & 0_{n n}\end{array}\right)$ is a prime factor of $\binom{M a t(f)}{0_{k m}}_{m \times m}$.
(2) For $n \geqslant m$ and an epimorphism $f: F^{n} \rightarrow F^{m}$,
let $k=n-m$ and let partitionize the associated matrix $\operatorname{Mat}(f)$ by m by m, that is $(\operatorname{Mat}(f))=\binom{F_{11}}{F_{21}}$, where $F_{11} \in M a t_{m \times m}$ and $F_{21} \in M a t_{k \times m}$ Then we have a prime matrix P in $M a t_{n \times n}(F)$ such that $P=\left(\begin{array}{ll}F_{11} & 0_{m k} \\ F_{21} & D_{k k}\end{array}\right)$ where $D_{k k}=\left(d_{2 \jmath}\right)_{k \times k}$ is as in the above (1) and where $0_{m k}$ is the zero matrix. This matrix P is a prime factor of $\left(\operatorname{Mat}(f) 0_{n k}\right)_{n \times n}$.

References

[1] S. Lang, Linear Algebra, Forth Printing 1969, Addison-Wesiey Publishing Company, 1966
[2] F W. Anderson and K R Fuiler, Rangs and Categores of modules, 2nd ed, Springer-Verlag, New York, Heldelberg, Berlin, 1992.

Department of mathematics
Kyungnam University

Masan 631-701, Korea
E-mail: ssb @hanma.kyungnam.ac.kr

[^0]: Recesved June 1, 1998
 1991 Mathematics Subject Classification. 16A20
 Key words and phrases- (quast-) injective, (quasi-)projective, retractable, prame, maximal, urreducible (stmple).

