East Asian Math. J. 14 (1998), No. 2, pp 259-268

CERTAIN DISCRIMINATIONS OF PRIME ENDOMORPHISM AND PRIME MATRIX

SOON-SOOK BAE

ABSTRACT In this paper, for a commutative ring R with an identity, considering the endomorphism ring $End_R(M)$ of left R-module $_RM$ which is (quasi-)injective or (quasi-)projective, some discriminations of prime endomorphism were found as follows: each epimorphism with the *irreducible*(or *simple*) kernel on a (quasi-)injectivemodule and each monomorphism with maximal image on a (quasi-)projective module are prime. It was shown that for a field F, any given square matrix in $Mat_{n\times n}(F)$ with maximal image and *irreducible* kernel is a prime matrix, furthermore, any given matrix in $Mat_{n\times n}(F)$ for any field F can be factored into a product of prime matrices.

1. Introduction

Let R be a commutative ring with an identity and let R^n be the direct product of n-copies of R, for any natural number n.

From the elementary linear algebras, it is well-known that there is an R-linear mapping between the set $Mat_{m \times n}(R)$ of all $m \times n$ -matrices and the set $Hom_R(R^n, R^m)$ of all linear mappings from R^n into R^m , where $n, m \in N$ are any natural numbers. In this paper the fact that between $Hom_R(R^n, R^m)$ and $(Mat_{m \times n}(R))^t$ there is an R-linear mapping too, where t stands for the transpose operator is mostly used. In other words, for an element $(r_1, r_2, \cdots, r_n) \in R^n$,

Received June 1, 1998

¹⁹⁹¹ Mathematics Subject Classification. 16A20

Key words and phrases (quasi-)injective, (quasi-)projective, retractable, prime, maximal, irreducible (simple).

$$(r_1 \ r_2 \ \cdots \ r_n) \begin{pmatrix} a_{11} \ a_{12} \ \cdots \ a_{1m} \\ a_{21} \ a_{22} \ \cdots \ a_{2m} \\ \vdots \\ a_{n1} \ a_{n2} \ \cdots \ a_{nm} \end{pmatrix} = (r_1, \ r_2, \ \cdots, \ r_n) f$$

f and $(a_{ij})_{n \times m}$ act on the right side of \mathbb{R}^n for the associated matrix $(a_{ij})_{n \times m}$ with f, denoted by Mat(f). A module $_RM$ is said to be R-quasi-projective(R-quasi-injective, resp.) if for each epimorphism $g: _RM \to _RN$ (for each-monomorphism $f: _RK \to _RM$, resp.) and for each homomorphism $\gamma: _RM \to _RN(\gamma: _RK \to _RM$, resp.) there is an R-homomorphism such that $\overline{\gamma}: _RM \to _RM$ such that $\gamma = \overline{\gamma}g(\gamma: _RM \to _RM$ such that $\gamma = f\overline{\gamma}$, resp.).

Recall that R^k is an R-(quasi-)injective and (quasi-)projective module for any natural number $k \in \mathbb{N}$. Because we are studying left R-modules $_RM$, conveniently let the compositions of all mappings be written by the reverse order, in the order as follows:

$$gh : {}_{R}K \xrightarrow{g} {}_{R}M \xrightarrow{h} {}_{R}N$$

LEMMA 1.1. Every monomorphism on any left R-(quasi-) injective module _RM is right invertible in $End_R(M)$.

Proof. In the definition of an R-(quasi-)injective, replacing $_RK$ by $_RM$ and γ by the identity on $_RM$, the proof is established immediately.

LEMMA 1.2. Every epimorphism on any left R-(quasi-) projective module $_RM$ is left invertible in $End_R(M)$.

Proof. In the definition of an R-(quasi-) projective, replacing $_RN$ by $_RM$ and γ by the identity on $_RM$, the proof is established immediately.

For the reason of the following definition, it will be answered partly in Remark 2.7.

An endomorphism g is said to be left retractable in $End_R(M)$ if there is an endomorphism $g' \in End_R(M)$ such that the restriction $g'g \mid_{Img}$ of the composition g'g of g' and g to the image Img of g is the identity of the image of g, that is, $g'g \mid_{Img} = 1_{Img}$ the identity endomorphism on $Img \leq M$. DEFINITION 1.3. For a non-unit endomorphism p of the endomorphism ring $S = End_R(M)$, p is said to be *prime* if p = fg for $f, g \in S$, then f is right invertible or g is left *retractable* in $End_R(M)$.

Two endomorphisms $f,g \in End_R(M)$ are said to be similar if $Imf = Img \leq M$. This definition of the similarity of two $f,g \in End_R(M)$ (with an *n*-dimension vector space $_FM$ over a field F = Rhaving a fixed basis) is not the same as the similarity of two associated matrices Mat(f), Mat(g) in $Mat_{n \times n}(R)$ with f, g by Mat: $End_R(M) \to Mat_{n \times n}(R)$, i.e., not the same as the similarity of matrices in many general Linear Algebra books. Two endomorphisms $f,g \in End_R(M)$ are said to be cosimilar if ker $f = \ker g \leq M$.

2. Results

Any commutative ring R with an identity and $_{R}R^{k}$ are (quasi-)injective (quasi-)projective module for any natural number n. By Lemmas 1.1 and 1.2, the following Theorems 2.1 and 2.2 are obtained easily.

THEOREM 2.1. All non-unit epimorphisms on any left R-(quasi-) projective module $_{R}M$ are prime.

THEOREM 2.2. All non-unit monomorphisms on any left R-(quasi-) injective module $_{R}M$ are prime.

A submodule $N \leq M$ is said to be *irreducible* (*simple*) if N has no non-zero submodule.

PROPOSITION 2.3. For a left (quasi-)projective module $_RM$, if a monomorphism f in $End_R(M)$ has the maximal image $Imf \leq M$, then f is prime.

Proof. Suppose that f = gh for some endomorphisms $g, h \in End_R(M)$. . Then the maximal submodule $Imf = Imgh \leq Imh$ implies that Imh = M or Imf = Imh. If Imh = M, then h is left invertible in $End_R(M)$ since M is (quasi-)projective. Hence h is left retractable. If Imf = Imh, then h = sf and f = th for some $s, t \in End_R(M)$ since M is (quasi-)projective. Thus f = gh = gsf and $(1_M - gs)f = 0$ follow, where 1_M denotes the identity mapping on M. Hence $Im(1_M - gs)f =$ 0 and $Im(1_M - gs) \leq \ker f = 0$ implies that $Im(1_M - gs) = 0$ and $1_M - gs = 0$. Hence g is right invertible in $End_R(M)$. Therefore f is prime. \Box

Let a *prime* monomorphism denote a monomorphism with the maximal image on a (quasi-)projective module.

PROPOSITON 2.4. For any left (quasi-)injective R-module $_RM$, if an epimorphism f in $End_R(M)$ has the irreducible kernel ker $f \leq M$, then f is prime.

Proof. By the dual proof of the Proposition 2.3, it is proved.

Let a *prime* epimorphism denote an epimorphism with the *irre*ducible

(simple) kernel on an (quasi-)injective module.

COROLLARY 2.5. For an endomorphism g and for any prime monomorphism $f_{\alpha} \in End_{R}(M)$ with the (quasi-)projective module $_{R}M$, if $Img \leq \bigcap_{\alpha} Imf_{\alpha}$, then f_{α} divides g for each α .

Proof. Suppose that $Imf \leq \bigcap_{\alpha} Imf_{\alpha}$ for some indexed $\{f_{\alpha}\}_{\alpha}$. Then the fact $Imf \leq Imf_{\alpha}$, for each α implies that $f = s_{\alpha}f_{\alpha}$ for some $s_{\alpha} \in End_R(M)$ and for each α since $_RM$ is (quasi-)projective.

COROLLARY 2.6. For an endomorphism f and for any prime epimorphism $f_{\alpha} \in End_{R}(M)$ with (quasi-)injective module $_{R}M$, if ker $f \geq \sum_{\alpha} \ker f_{\alpha}$, then f_{α} divides f for each α .

REMARK 2.7. The definition of *prime* endomorphism (quasi-)injective and

(quasi-)projective module $_{R}M$ if $End_{R}(M)$ is commutative is the same as the definition of *irreducible* or *prime* elements of commutative rings.

Precisely, on a (quasi-)injective and (quasi-)projective module $_RM$ each prime endomorphism f with f = gh implies that g is a unit in $End_R(M)$ or h is left retractable.

For a right invertible factor g of f, there is an $s \in End_R(M)$ such that $gs = 1_M$. To show that $sg = 1_M$, let's consider the following

diagram including monomorphism g and epimorphism s with the condition $gs = 1_M$:

then there are endomorphisms α , $\beta \in End_R(M)$ such that $g = \alpha s$ and $s = g\beta$ since $_RM$ is (quasi-)injective (quasi-)projective Clearly $\beta\alpha = 1_M$. And hence $sg = (g\beta)(\alpha s) = g(\beta\alpha)s = gs = 1_M$ follows Therefore g is a unit. Thus if $End_R(M)$ is commutative, and if a prime endomorphism f has a product f = gh = hg, then one of g and h is at least a unit in $End_R(M)$.

From the above Corollaries 2.5 and 2.6 it isn't told in general that f has a factorization in terms of the *prime* epimorphisms or the *prime* monomorphisms. It depends on the first left endomorphism and on the last right endomorphism. In other words, if $f = sp_{\alpha}(\text{or } f = p_{\alpha}t)$ for some *prime* epimorphism or *prime* monomorphism p_{α} . Then we must try to factor out s(or t) and so on, respectively

PROPOSITION 2.8. For a left (quasi-)injective and (quasi-)projective module $_{R}M$, if a non-unit endomorphism f has the maximal image $Imf \leq M$ and the irreducible(simple) kernel ker $f \leq M$. Then f is prime.

Proof. Suppose that f = gh with $Img \cap \ker h \neq 0$ or with $Img \cap \ker h = 0$. Then $\ker g \leq \ker f = g^{-1}(\ker h)$ the preimage of $\ker h$ under g implies that $\ker g = 0$ from $Img \cap \ker h \neq 0$. Or we have a case of $Img \cap \ker h = 0$ with f = gh. If $Imp \geq Imh = M$, the retractability of h follows immediately. Hence we assume that $Imh = Imp \leq M$ is proper in M.

We have a monomorphism g which is right invertible in $End_R(M)$ for the first case. For the case of $Img \cap \ker h = 0$, if $\ker h \neq 0$ we have a submodule $Img \oplus \ker h \leq M$. Then $Imf \simeq Img \simeq Imh$ follows from kerf = kerg and Imh = Imp, where the symbol \simeq denotes the isomorphic. Hence h is left retractable on Imh through the extendable isomorphisms on a left (quasi-)injective and (quasi-)projective module $_{R}M$.

If ker h = 0, it follows that a monomorphism h (which is a unit since $_{R}M$ is a left (quasi-)injective and (quasi-)projective module) is left retractable on $Imh \leq M$. Therefore f is a prime endomorphism. \Box

3. Applications

Remind that the ring R is assumed to be a commutative ring with an identity. Here $R^n = \prod_{i=1}^n R$ denotes the product of $\{R_i\}_{1 \le i \le n}$ with $R_i = R$ and $R^{(n)}$ denotes the direct product of n-copies of R. Recall the linear algebra theory: there is an R-linear mapping between the set of all linear mappings from an n-dimensional vector space $_FU$ into the m-dimensional vector space $_FV$ and the set $Mat_{n\times m}(R) = (Mat_{m\times n}(R))^t$ of $n \times m$ -matrices whose entries are in R where t denotes the transpose operator. For any field F with identity 1, the following should be noticed:

- (1) Every maximal submodule of $F^{(n)}$ is the direct product $F^{(n-1)}$ and every *irreducible(simple)* submodule of $F^{(n)}$ is the direct product $F^{(1)}$.
- (2) The direct product $F^{(n)}$ of *n*-copies of any field F is (quasi-)injective and (quasi-)projective for any n, moreover $F^{(n)}$ is self-generated and self-cogenerated.
- (3) Hereafter we assume that each k-dimensional space $_FF^k$ has the standard orthogonal basis

 $\{e_i = (x_1, \cdots, x_k) \mid x_i = 1, x_j = 0, \text{ for } j \neq i, 1 \leq i, j \leq k \}$ for each natural number $k \in \mathbb{N}$.

(4) It is important to remember that every monomorphism and every epimorphism from F^k into itself F^k are automorphisms for every $k \in \mathbb{N}$.

Briefly and conveniently, let's replace the associated linear mapping L(A) by A properly.

APPLICATION 3.1. Let $A = (a_{ij}) \in Mat_{n \times n}(F)$ be a matrix with the maximal image $ImA = F^{(n-1)}$ and the *irreducible(simple)* kernel

ker $A = F^{(1)}$. Then A is a prime matrix. Furthermore every similar cosimilar matrix to the above matrix $(a_{ij})_{n \times n}$ is also prime.

Proof. For any epic or monic matrix U, the associated linear mapping

 $L(U): F^n \to F^n$ the (quasi-)injective (quasi-)projective n-dimensi $onal vector space <math>F^n$ over F is an automorphism. Hence each monic matrix and each epic matrix are units. Thus the Proposition 2.8 can apply here to the matrix ring $Mat_{n\times n}(F)$. Hence we have immediately a *prime* matrix A with the maximal image and the *irreducible* kernel. \Box

For example, let $A = (a_{ij}) \in Mat_{n \times n}(F)$ be a matrix such that

$\int a_{jj}$	$= 1$, for $1 \le j \le n$
$\begin{cases} a_{1k} \\ \hat{a}_{1k} \end{cases}$	$a_{k1} = -1$, for the only one k , $1 \le k \le n$, = 0, if i i i i i i i i i i i i i i i i i i
(a _{ij}	$=0, \text{II} i \neq j \neq k$.
$(a_{ij})_{n \times n} =$	$\begin{pmatrix} 1 & 0 & 0 & \cdots & -1 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & 1 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & prime \text{ matrix} \\ -1 & \vdots & \vdots & \vdots & \vdots & prime \text{ matrix} \\ 0 & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots &$

For this matrix $(a_{ij})_{n \times n}$, $A = (a_{ij})_{n \times n}$ is an endomorphism with the maximal image

$$ImA = \{ (x_1, \overline{\cdot}, x_k, \cdots, x_n) \mid x_1 = -x_k, x_i \in F \}$$

= $F^{(n-1)}$

and the *irreducible*(*simple*) kernel

$$\ker A = F^{(1)} = \{ (a_1, 0, \dots, 0, a_k, 0, \dots, 0) \mid a_1 = a_k, a_i = 0 \text{ for } i \neq k, 1 \leq i \leq n \}.$$

COROLLARY 3.2. For any matrix $A = (a_{ij})_{n \times n} \in Mat_{n \times n}(F)$ with a field F and for any prime matrix $P_{\alpha} = (p_{ij})_{\alpha} \in Mat_{n \times n}(F)$, if $ImA \leq \cap ImP_{\alpha}$ and if ker $A \geq \sum_{\alpha} \ker P_{\alpha}$, then P_{α} divides A for each α .

Recalling the item (3) above the Application 3.1, we only consider the standard orthogonal bases of all F^k . Then the following are obtained by the *associate Mat* preserving composition of linear mappings, that is,

Mat(fg) = Mat(f)Mat(g).

APPLICATION 3.3. For $n \in N$ and for any field F with an identity 1, if $f: F^n \to F^n$ is a prime endomorphism, then the associated matrix Mat(f) is a prime matrix. Clearly if a square matrix is prime, then its associated linear mapping is also a prime endomorphism.

For two matrices A, C, we call A an edge factor of C if $C = AB \cdots H$ or $C = H \cdots BA$ for some matrices B, \cdots, H .

REMARK 3.4. For two square matrices $A, B \in Mat_{n \times n}(F)$, the following are to be read about *similar* matrices :

- (1) If A, B are similar in the sense of Linear Algebra, i.e., there is a unit matrix $N \in Mat_{n \times n}(F)$ such that $A = N^{-1}BN$. Then A is prime if and only if B is prime. However A and B need not be, in general, similar cosimilar in the sense of this paper.
- (2) For A, B as in (1) and for $C \in Mat_{n \times n}(F)$, A is a factor of C if and only if B is a factor of C, however for an edge factor A of C, B need not be an edge factor of C in general.
- (3) Moreover for similar cosimilar matrices $A, B \in Mat_{n \times n}(F)$, A is prime if and only if B is prime.
- (4) If A, B are similar cosimilar and $C \in Mat_{n \times n}(F)$. Then A is a factor, or an edge factor of C if and only if B is a factor, or an edge factor of C, respectively.

A METHOD OF FACTORIZING A SQUARE MATRIX. There might be lots of different ways to factorize any given square matrix $A \in Mat_{n \times n}(F)$.

- (1) Find prime square matrices P_{α} such that $\cap ImP_{\alpha} \ge ImA$ and $\ker A \ge \sum \ker P_{\alpha}$.
- (2) Select one \overline{P}_{α_0} of the prime matrices P_{α} .
- (3) Find a factor matrix F_{α_0} such that $A = F_{\alpha_0}P_{\alpha_0}$ or $A = P_{\alpha_0}F_{\alpha_0}$.

Certain discriminations of prime endomorphism and prime matrix 267

- (4) Do the step (1) for the factor matrix F_{α_0} .
- (5) After the steps (1) and (4), go to the steps (1) and (4).
- (6) Select those factors of A and write them properly.

For further applications of *prime* matrices with distinct size n by m for $n \neq m$, here some illustrations are given.

(1) For $n \leq m$ and a monomorphism $f: F^n \to F^m$, let k = m - nand let partitionize the associated matrix Mat(f) by k by k, that is, $(Mat(f)) = (F_{11} \ F_{12})$, where $F_{11} \in Mat_{k \times k}$ and $F_{12} \in Mat_{k \times n}$. Then we have a prime matrix $P \in Mat_{m \times m}(F)$, precisely

$$P = \begin{pmatrix} F_{11} & F_{12} \\ D_{kk} & 0_{nn} \end{pmatrix} \text{ where } D_{kk} = (d_{ij})_{k \times k} \text{ with}$$
$$d_{ij} = \begin{cases} 0 \text{ if } i = j = l \text{ for only one } l, \ 1 \le l \le k \\ \delta_{ij} \text{ elsewhere , for the Kronecker's delta } \delta_{ij} \end{cases}$$

and where 0_{nn} is the zero matrix. This matrix $P = \begin{pmatrix} F_{11} & F_{12} \\ D_{kk} & 0_{nn} \end{pmatrix}$

is a prime factor of $\binom{Mat(f)}{0_{km}}_{m \times m}$. (2) For $n \ge m$ and an epimorphism $f: F^n \to F^m$,

let k = n - m and let partitionize the associated matrix Mat(f) by m by m, that is $(Mat(f)) = \begin{pmatrix} F_{11} \\ F_{21} \end{pmatrix}$, where $F_{11} \in Mat_{m \times m}$ and $F_{21} \in Mat_{k \times m}$. Then we have a prime matrix P in $Mat_{n \times n}(F)$ such that $P = \begin{pmatrix} F_{11} & 0_{mk} \\ F_{21} & D_{kk} \end{pmatrix}$ where $D_{kk} = (d_{ij})_{k \times k}$ is as in the above (1) and where 0_{mk} is the zero matrix. This matrix P is a prime factor of $(Mat(f) \ 0_{nk})_{n \times n}$.

References

- S. Lang, Linear Algebra, Forth Printing 1969, Addison-Wesley Publishing Company, 1966
- [2] F W. Anderson and K R Fuller, Rings and Categories of modules, 2nd ed, Springer-Verlag, New York, Heidelberg, Berlin, 1992.

Department of mathematics Kyungnam University Masan 631-701, Korea *E-mail*: ssb @hanma.kyungnam.ac.kr