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CERTAIN DISCRIMINATIONS OF PRIME 
ENDOMORPHISM AND PRIME MATRIX

Soon-Sook Bae

Abstract In this paper, for a commutative ring R with an iden­
tity, considering the endomorphism ring End^{M) of left R—module 
rM which is (quasi-) injective or (quasi-) projectzve, some discrimi­
nations of prime endomorphism were found as follows, each epimor­
phism with the irreducMe(or simple) kernel on a (quasi-) injective 
module and each monomorphism with maximal image on a {quasz- 
)progectzve module are prime It was shown that for a field F, any 
given square matrix in Matnxn(F) with maximal image and irre­
ducible kernel is a prime matrix, furthermore, any given matrix in 
MatnXn^) for any field F can be factored into a product of prime 
matrices.

1. Introduction

Let B be a commutative ring with an identity and let R71 be the 
di호ect product of n—copies of R)for any natural number n.

From the elementary linear algebras, it is well-known that there is an 
7?—linear mapping between the set Matmxn(R) of all m x n—matrices 
and the set z Rm) of all linear mappings from BJ1 into
where m E N are any natural numbers. In this paper the fact 
that between J?m) and (肱纨血5(氏))'there is an linear
mapping too, where t stands for the transpose operator is mostly used. 
In other words, for an element (ri,他，• • • , rn) e 欣 ,
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f and (azj)nXTn act on the right side of for the associated ma­
trix (㈤j)nxm with f , denoted by Mat(f) . A module rM is said 
to be R— quasi-projective( R—quasi-injective^ resp.) if for each epimor­
phism g : rM —> rN (for each^nonomorphism f : rK 一스 rM, resp.) 
and for each homomorphism 7 : rM —> rN(( : rK —> rM} resp.) 
there is an J?—homomorphism such that 7 : rM —> rM such that 
7 = 珂: rM 一스 rM such that 7 = 卢% resp.).

Recall that Rk is an R—(quasi-)injective and (quasi-)projective mod­
ule for any natural number fc € N. Because we are studying left 
1?—modules rM , conveniently let the compositions of all mappings 
be written by the reverse order, in the order as follows:

gh : rk _翌一 rm 一브t rn

Lemma 1.1. Every monomorphism on any left R— (quasi-)injective 
module rM is right invertible in EndR(M).

Proof. In the definition of an R—(quasi-)injective, replacing rK by 
rM and 7 by the identity on rM, the proof is established immediately.

Lemma 1.2. Every epimorphism on any left R—(quasz-)projective 
module rM is left invertible in EndR(M). ~

Proof. In the definition of an R—(quasi-)projective^ replacing rN by 
rM and 7 by the identity on rM> the proof is established immediately.

For the reason of the following definition, it will be answered partly 
in Remark 2.7.

An endomorphism g is said to be left retractable in EndR(M) if 
there is an endomorphism gf E EndR(M) such that the restriction 
g 9 \img of the composition gfg of gf and g to the imag으 Img of g is 
the identity of the image of g, that is, 9 9 \img= the identity 
endomorphism on Img < M.
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Definition 1.3. For a non-unit endomorphism p of the endomor­
phism ring S = EndR(M) , p is said to be prime if p — fg for 
£ g C S , then f is right invertible or g is left retractable in End^M).

Two endomorphisms C EndR(M) axe said to be similar if 
Imf = Img < M . This definition of the similarity of two € 
End(with, an n—dimension vector space pM over a field F = R 
having a fixed basis) is not the same as the similarity of two asso­
ciated matrices Mat(g) in Matnxn(R) with £ g by Mat :
EndR(M) 一스 MatnXn(-R)j i.e., not the same as the similarity of ma­
trices in many general Linear Algebra books. Two endomorphisms 
Lg C End^M) are said to be cosimilar if ker f = kerg < M .

2. Results

Any commutative ring R with an identity and rRF are (quasi- 
^injective (quasi-)projective module for any natural number n. By 
Lemmas 1.1 and 1.2, the following Theorems 2.1 and 2.2 are obtained 
easily.

THEOREM 2.1. All non-unit epimorphisms on any left R~(quasi- 
)projective module rM are prime .

Theorem 2 2. All non-unit monomorphisms on any left R—(quasi- 
}mjective module rM are prime .

A submodule N < M is said to be irreducible (simple) if N has no 
non-zero submodule.

Proposition 2.3. Pbr a left (quasz~)projectwe module rM, if a 
monomorphism f in End^M} has the maxima] image Imf < M , 
then f is prime.

Proof. Suppose that f = gh for some endomorphisms g’h E EndR(M) 
. Then the maximal submodule Imf = Imgh < Imh implies that 
Imh = Af or Imf = Imh . If Imh = 나len h is left invertible in 
EndR(M) since M is {quasi-)projective. Hence h is left retractable. If 
Imf = Imh, then h = sf and f ~ th for some sj沱 EndR(M) since 
M is (quasi-)projective. Thus f = gh = gsf and (Im~55)/ = 0 follow, 
where Im denotes the identity mapping on M. Hence /m(lM —ps)/ = 
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0 and — gs) 으 kerf = 0 implies that Im(l^ — gs) = 0 and 
Im — gs = 0. Hence g is right invertible in EndR(M). Therefore f is 
prime. □

Let a prime monomorphism denote a monomorphism with the max­
imal image on a (quasi-)projective module.

PROPOSITON 2.4. For any left (quasi-)injective R—module rM, if 
an epimorphism f in End^M} has the irreducible kernel ker / < Af , 
then f is prime .

Proof. By the dual proof of the Proposition 2.3, it is proved.

Let a prime epimorphism denote an epimorphism with the irre­
ducible

(simple) kernel on an {quasi-^znjective module.

Corollary 2.5. For an endomorphism g and for any prime monomor­
phism fa E EndR(M) with the (quasi-)projective module rM, iflmg < 
nQZm/a； then fa divides g for each a .

Proof, Suppose that Imf < naIm/a for some indexed {fa}a- Then 
the fact Imf < Im/a)for each a implies that f = safa for some 
sa € EndR(M) and for each a since rM is (quasi-)projective.

Corollary 2.6. For an endomoiphism / and for any prime epi­
morphism j云 e End^M) with (quasi-}injective module rM, if ker / > 

ker/a? then fa divides f for each a .

Remark 2.7. The definition of prime endomorphism (quasi-) injective 
and

(quasi-)projective module rM if Endn^M) is commutative is the 
same as the definition of irreducible or prime elements of commutative 
rings.

Precisely, on a (quasi-)injective and (quasi-)projective module rM 
each prime endomorphism f with f = gh implies that g is a unit in 
EndR(M) or h is left retractable .

For a 호ight invertible factor g of /, there is an s € End^M) such 
that gs = Im- To show that sg — Im, let's consider the following 
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diagram including monomorphism g and epimorphism s with the con­
dition gs = Im :

M… -M

企］ 9

0 ------- > M —으一^ M —8一 M ------- > 0

3 3

M = M_= M

then there are endomorphisms a ,0 C EndR(M) such that g — as 
and s = g/3 since is (quasi-)injechve (quasi-)projective Clearly 
f3a = Im- And hence sg = (g/3)(as) = g(J3a)s = gs = Im follows 
Therefore p is a unit. Thus if End^M) is commutative, and if a prime 
endomorphism f has a product f = gh，= hg> then one of g and h is at 
least a unit in Eti(1r(M).

From the above Corollaries 2.5 and 2.6 it isn't told in general that 
f has a factorization in terms of the prime epimorphisms or the prime 
monomo호phisms. It depends on the first left endomorphism and on the 
last right endomorphism. In othe호 words, if / = spa(or f = p^t) for 
some prime epimorphism or prime monomorphism pa. Then we must 
try to factor out s(or t) and so on, respectively

Proposition 2.8. For a left (quasi-)injective and (quasi-)projective 
module rM , if a non■니endomorphism f has the maximal image 
Imf < M and the irreduczble(simple) kernel ker / < M. Then f is 
prime.

Proof. Suppose that f = gh with Img A ker h 0 or with Img A 
ker/z = 0 . Then kerg < ker f = g_1(ker Ji) the preimage of ker h 
under g implies that ker g = Q fi?om ImgCiker /z 供 0 . Or we have a case 
of Img A ker h = 0 with f = gh. If Imp > Imh =虬 the retractabzlity 
of h follows immediately. Hence we assume that Imh — Imp < M is 
proper in M.

We have a monomorphism g which is right invertible in End,R(M) 
for the fi호st case. For the case of Img D ker 力 = 0 , if ker/i 7^ 0 we 
have a submodule Img ® ker h < M. Then Imf 湼 Img w Imh follows 
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from kerf = kerg and Imh = Imp, where the symbol 工 denotes the 
isomorphic. Hence h is left retractable on Imh through the extendable 
isomorphisms on a left (quasi^)injective and (quasi-^projective module 
rM.

If ker 7i = 0, it follows that a monomorphism h (which is a unit 
since is a left (quasi-)injectwe and (quasi^)projective module) is left 
retractable on Imh < M . Therefore / is a prime endomorphism. □

3. Applications

Remind that the ring R is assumed to be a commutative ring with 
an identity. Here R" = denotes the product of (J?2}i<2<n 
with Rt = R and 7?(끼 denotes the direct product of n—copies of 
R. Recall the linear algebra theory: there is an K—linear mapping 
between the set of all linear mappings from an n—dimensional vec­
tor space fU into the m—dimensional vector space pV and the set 
Matnx^R) = (M成mxn(R))* of 7i x m—matrices whose entries are 
in R where t denotes the transpose operator. For any field F with 
identity 1, the following should be noticed:

(1) Every maximal submodule of 끼 is the direct product
and every irreducMe^simple) submodule of is the direct 
product F⑴. '

(2) The direct product 户侦)of n—copies of any field F is (quast- 
)injectwe and (quasi-)projective for any n, moreover F(”)is 
self-generated and self-cogenerated.

(3) Hereafter we assume that each A;—dimensional space pFk has 
the standard orthogonal basis

{% = 31,) I 气=L：勺=O,for 顶 5, <k}
for each natural number k C N ・

(4) It is important to remember that every monomorphism and 
every epimorphism from Fk into itself Fk are automorphisms 
for every fc € N.

Briefly and conveniently, let's replace the associated linear mapping 
Z(A) by A properly.

Application 3.1. Let A = g Matnxn(F) be a matrix with 
the maximal image ImA =硏”】)and the irreduczble(simple) kernel 
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kerA = F ⑴.Then A is a prime matrix. Furthermore every similar 
cosimilar matrix to the above matrix (a2J)nXn is also prime.

Proof. For any epic or monic matrix U> the associated linear map­
ping

L(U) : Fn Fn the (quasi-)znjectwe (quasi~)projective n—dimensi­
onal vector space Fn over F is an automorphism. Hence each monic 
matrix and each epic matrix are units. Thus the Proposition 2.8 can 
apply here to the matrix ring MatnXn(F). Hence we have immedi­
ately a prime matrix A with the maximal image and the irreducible 
kernel. □ -

For example, let A = (%) G MatnXn(F) be a matrix such that

= 1 , for 1 < j < n

aik = 이ci = —1 , for the only one A; , 1 < A; < n ,

%项=0 , if i 产 j 产 k .

/ 1 00 … 一1.・. 0 \
0 1 0............................. 0
0 0 1............................. 0

(aTj)nXn = ..................................................... is a prime matrix
—1................  0 1 • • •

\ 0............................ 0 1
For this matrix (av)nXn , A = (a^)nXn is an endomorphism with 

the maximal image
I mA = {(a%…,xk, - ■ ■ ,xn) \ xi - -xk, e F }

and the irreducible(simple) kernel

ker A = F ⑴

=( (ai,0,• ■ - ,0, 0, • • • ,0) I ai = = 0 for 2 7^ fe, 1 < 2 < n }.

Corollary 3.2. For any matrix A = (atJ)nXn C Matnxn(F) with 
a Geld F and for any prime matrix Pa = € MatnXn(F), if
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ImA < nlmP^ and if ker A > ^2aker Pa} then Pa divides A for each 
a.

Recalling the item (3) above the Application 3.1, we only consider 
the standard orthogonal bases of all Fk. Then the following are ob­
tained by the associate Mat preserving composition of linear mappings, 
that is,

Mat(fg) = Mat(f)Mat(g).

Application 3.3. For n E N and for any field F with an identity 
1, iff : Fn —> Fn is a prime endomorphism, then the associated matrix 
Mat(f) is a prime matrix. Clearly if a square matrix is prime, then 
its associated linear mapping is also a prime endomorphism.

For two matrices A, C、we call A an edge factor of C if C = AB …H 
or C — H ■ • BA for some matrices B, • ■ • , H.

Remark 3.4. For two square matrices A, B € MatnXn{F\ the 
following are to be read about similar matrices :

(1) If A, B are similar in the sense of Linear Algebra, i.e., there is 
a unit matrix N G Matnxn(F) such that A = PLBN. Then 
A is prime if and only if B is prime. However A and B need 
not be, in general, similar cosimilar in the sense of this paper.

(2) For >1, B as in (1) and for C e MatnXn(F), A is a factor of C 
if and only if B is a factor of C, however for an edge factor A 
of C B need not be an edge factor of C in general.

(3) Moreover for similar cosimilar matrices A^B E MatnXn{F^ A 
is prime if and only if B is prime.

(4) If 4」B are simzlar cosimilar and C € MatnXn(F). Then A is 
a factor, or an edge factor of C if and only if B is a factor, or 
an edge factor of C, respectively.

A Method of Factorizing a square Matrix. There might 
be lots of different ways to factorize any given square matrix A G 
MatnXn(F).

(1) Find prime square matrices Pa such that r}ImPa > ImA and
ker A > .

(2) Select one of the prime matrices Pa .
(3) Find a factor matrix such that A = or A =

0・
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(4) Do the step (1) for the factor matrix E血.

(5) After the steps (1) and (4), go to the steps (1) and (4).
(6) Select those factors of A and write them properly.

For further applications of prime matrices with distinct size n by m 
for n 7^ m, here some illustrations are given.

(1) For n<m and a monomorphism f : Fn —> Fm, let k = m — n 
and let partitionize the associated matrix Mat(f) by k by fc, 
that is, (Mat(/)) = '(-^n 呂2), where Fn € Mat^xk and 
F\2 € Matkxn- Then we have a prime matrix P G 
precisely -

p = ( ■依 普)where Dkk = (^)kxfc with

(0 if t = j = I for only one Z, 1 <1 < k
혀，f elsewhere , for the Kronecker^ delta 5勺 '

( f가 [ F] o 
and where 0nn is the zero matrix. This matrix 尸=(厂、 n

\ Dkk

is a prime factor of ( n ] .

(2) For n>m and an epimorphism f : Fn —> Fm,
let k = n — m and let partitionize the associated matrix 

Mat(f) by m by m, that is (Mat(f)、) = (j') ，where 

Fn E Matmxm and 7如 6 Matkxm Then we have a prime 
matrix P in MatnXn(F) such that F = ( 썬口 ] where 

L)kk 丿
Dkk = (dzj)kxA： is as in the above (1) and wh&e 0mA： is the zero 
matrix. This matrix F is a prime factor of ( Mat(f) Onfc )nxn .
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