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CERTAIN DISCRIMINATIONS OF PRIME
ENDOMORPHISM AND PRIME MATRIX

SOON-S00K BAE

ABsTRACT In this paper, for a commutative ing R with an 1den-
tity, considering the endomorphism ring End g (M) of left R—module
RM which 1s (guast-)ingective or {quasi-)prozective, some disenim-
nations of prime endomorphism were found as follows' each epimor-
phism with the wrreduceble(or szmple) kernel on a (quas:-)ingective
module and each monomorphism with maximal image on a (quas:-
)projectve module are prime It was shown that for a field F, any
given square matnx 1n Maty, «» (F)} with maximal image and wrre-
ducsble kernel 15 a prime matrix, furthermore, any given matnx in
Maty, o (F) for any field F can be factored into a product of prime
matrices.

1. Introduction

Let R be a commutative ring with an identity and let R® be the
direct product of n—copies of R, for any natural number n.

From the elementary linear algebras, it is well-known that there is an
R—hnear mapping between the set Mat,, x»(R) of all m X n—matrices
and the set Hompg(R™, R™) of all linear mappings from R" into R™,
where n, m € N are any natural numbers. In this paper the fact
that between Hompg(R™, R™) and (Mat,,x»(R))" there is an R—linear
mapping too, where t stands for the transpose operator 1s mostly used.
In other words, for an element (ry, r9, -+, 7,) € R* |
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f and {G:5)nxm act on the right side of R™ for the associated ma-
trix (@, )nxm Wwith f , denoted by Mat(f) . A module M is said
to be R— quasi-projective( R— quasi-injective, resp.) if for each epimor-
phism g : kM — grN (for each-monomorphism f : gK — gM, resp.)
and for each homomorphism v : gM — gN(y: gK — rM, resp.)
there is an R—homomorphism such that 7 : gM — gpM such that
v = Fg(y : RM — gM such that v = f7, resp.).

Recall that R¥ is an R—(quasi-)ingective and (quasi-}projective mod-
ule for any natural number ¥ € N. Because we are studying left
R—modules gM , conveniently let the compositions of all mappings
be written by the reverse order, in the order as follows:

gh irK —%2 s gM 2, N

LEMMA 1.1. Every monomorphism on any left R—(quasi-)}injective
module pM is right invertible in Endp(M).

Proof. In the definition of an R—{quasi-)injective, replacing g K by
rM and 7y by the identity on p M, the proof is established immediately.

LEMMA 1.2. Every epimorphism on any left R—(quasi-)projective
module g M is left invertible in Endgp(M). -

Proof. In the definition of an R—(quasi-)projective, replacing g N by
rM and « by the identity on g M, the proof is established immediately.

For the reason of the following definition, it will be answered partly
in Remark 2.7.

An endomorphism g is said to be left retractable in Endgp(M) if
there is an endomorphism ¢’ € Endg(M) such that the restriction
9'9 | Img of the composition ¢'g of ¢’ and g to the image I'mg of ¢ is
the identity of the image of g, that is, 99 limg= limg the identity
endomorphism on Img < M.
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DEFINITION 1.3. For a non-unit endomorphism p of the endomor-
phism ring S = Endr(M) , p is said to be prime if p = fg for
f,g €S, then f is right invertible or g is left retractable in Endg(M) .

Two endomorphisms f,g € Endg(M) are said to be similar if
Imf = I'mg < M . This definition of the similarity of two f,g €
Endr(M)(with an n—dimension vector space gM over a field F = R
having a fixed basis) is not the same as the similarity of two asso-
ciated matrices Mat(f), Mat(g) in Mat,xn(R) with f, ¢ by Mat :
Endr(M) — Mat,xn(R), ie., not the same as the simuarity of ma-
trices in many general Linear Algebra books. Two endomorphisms
f.g9 € Endr(M) are said to be cosimilar if ker f = kerg < M .

2. Results

Any commutative ring R with an 1dentity and grR* are (quasi-
Yingective (quasi-)projective module for any natural number n. By

Lemmas 1.1 and 1.2, the following Theorems 2.1 and 2.2 are obtained
easily.

THEOREM 2.1. All non-unit epimorphisms on any left R—(quas:-
)projective module g M are prume .

THEOREM 2 2. All non-unit monomorphisms on any left R—{quas-
yangective module g M are prime .

A submodule N < M is said to be irreducible (simple) 1f N has no
non-zero submodule,

PROPOSITION 2.3. For a left (quasi-)projective module g M, if a
monomorphism f in Endg(M) has the maximal image Imf < M ,
then f is prime.

Proof. Suppose that f = gh for some endomorphisms g, h € Endg(M)
. Then the maximal submodule Imf = I'mgh < Imh 1mplies that
Imh = M or Imf = Imh . If Imh = M, then h is left invertible in
Endg{M) since M is (quasi-)projective. Hence h is left retractable. If
Imf = Imh, then h = sf and f = th for some s,t € Endr(M) since
M is (quasi-)projective. Thus f = gh = gsf and (1 —gs)f = 0 follow,
where 1,7 denotes the identity mapping on M. Hence Im(ip —gs)f =
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0 and Im(lp — gs} < ker f = 0 implies that Im(ly — gs) = 0 and
1y — gs = 0. Hence g is right invertible in Endr(M). Therefore f is
prime. DO

Let a prime monomorphism denote a monomorphism with the max-
imal image on a (quasi-)projective module.

PROPOSITON 2.4. For any left (quasi-)injective R—module g M, if
an epimorphism f in Endr(M) has the irreducible kernel ker f < M ,
then f is prime .

Proof. By the dual proof of the Proposition 2.3, it is proved.

Let a prime epimorphism denote an epimorphism with the irre-
ducible

(sumple) kernel on an (quasi-)wmnjective module.

COROLLARY 2.5. For an endomorphism g and for any prime monomor-
phism f, € Endgp(M) with the (quasi-)projective module g M, if Img <
Nadmfa, then f, divides g for each « .

Proof. Suppose that Imf < N,Imf, for some indexed {fa}o. Then
the fact Imf < Imf,, for each o implies that f = s,f, for some
So € Endp(M) and for each « since p M is (quasi-)projective.

COROLLARY 2.6. For an endomorphism f and for any prime epi-
morphism fo € Endp(M) with (quasi-)injective module g M, if ker f >
Yoo ker fo, then fo divides f for each o .

REMARK 2.7. The definition of prime endomorphism (quasi-)injective
and

(quasi-)progective module gM if Endg(M) is commutative is the
same as the definition of irreducible or prime elements of commutative
rings.

Precisely, on a (quasi-)injective and (quasi-)projective module p M
each prime endomorphism f with f = gh implies that g is a unit in
Endr(M) or h is left retractable .

For a right invertible factor ¢ of f, there is an s € Endg(M) such
that gs = 1lpr. To show that sg = 1p4, let’s consider the following
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diagram including monomorphism g and epimorphism s with the con-
dition gs = 1pr :

M ——M
al ng
0 — M -2 s p 2 M > 0
| I
M M_ M

then there are endomorphisms a ,8 € Endgr(M)} such that g = as
and s = g smce pM is (quasi-)ingectwe (quasi-}projective Clearly
Ba = 1p. And hence sg = (gB)(as) = g(Ba)s = gs = 1 follows
Therefore g is a umt. Thus if Endg(M) is commutative, and if a prime

endomorphism f has a product f = gh = hg, then one of g and h1s at
least a unit in Endg(M).

From the above Corollaries 2.5 and 2.6 it isn’t told in general that
f has a factorization in terms of the prime epimorphisms or the prime
monomorphisms. It depends on the first left endomorphism and on the
last right endomorphism. In other words, if f = spo(or f = pat) for
some prime epimorphism or prime monomorphism p,. Then we must
try to factor out s{or t) and so on, respectively

PROPOSITION 2.8. For a left (quasi-)injective and (quasi-) projective
module gM | if a non-unit endomorphism f has the maximal image
Imf < M and the wrreducible(simple) kernel ker f < M. Then f is
prime.

Proof. Suppose that f = gh with Imgnkerh # 0 or with I'mgn
kerh = 0 . Then kerg < ker f = g~ !(ker k) the preimage of kerh
under g implies that ker g = 0 from Imgnker 2 # 0 . Or we have a case
of ImgNkerh =0 with f = gh. If Imp > Imh = M, the retractability
of h follows immediately. Hence we assume that Imh = Imp < M is
proper in M.

We have a monomorphism g which is right invertible in Endg(M)
for the first case. For the case of Imgnkerh = 0, if kerh # 0 we
have a submodule Img@ker h < M. Then Imf ~ I'mg =~ I'mh follows
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from kerf = kerg and I'mh = I'mp, where the symbol ~ denotes the
isomorphic. Hence A is left retractable on Imh through the extendable
isomorphisms on a left (quasi-)ingective and (quasi-)projective module
rM .

If kerh = 0, it follows that a monomorphism A (which is a umt
since g M is a left (quasi-)injective and (quasi-) projective module) is left
retractable on Imh < M . Therefore f is a prime endomorphism. O

3. Applications

Remind that the ring R is assumed to be a commutative ring with
an identity. Here R™ = []] R denotes the product of {R,}i<.<n
with R, = R and R denotes the direct product of n—copies of
R. Recall the linear algebra theory: there is an R—linear mapping
between the set of all linear mappings from an n—dimensional vec-
tor space pU into the m—dimensional vector space gV and the set
Mat,xm(R) = (Matymxn(R))' of n x m—matrices whose entries are
in R where ¢ denotes the transpose operator. For any field F with
identity 1, the following should be noticed:

(1) Every maximal submodule of (") is the direct product F(»=1)
and every wrreductble(simple) submodule of F(™ is the direct
product F(1). '

(2) The direct product F(™) of n—copies of any field F is (quasi-
)ingectwe and (quasi-)projectwe for any n, moreover F(® is
self-generated and self-cogenerated.

(3) Hereafter we assume that each k—dimensional space pF* has
the standard orthogonal basis

{62 = (:Bl:"' amk)lmz = 1,11?3 =07f0rj7é7:1 1 S Zy] S k}
for each natural number £k € N .

(4) It is important to remember that every monomorphism and
every epimorphism from F* into itself F* are automorphisms
for every k € N.

Briefly and conveniently, let’s replace the associated linear mapping
L{A) by A properly.

APPLICATION 3.1. Let A = (a,;) € Mat,xn(F) be a matrix with
the maximal image ImA = F("~1) and the irreducible(simple) kernel
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ker A = F(1) | Then A is a prime matrix. Furthermore every similar
cosimilar matrix to the above matrix (a,;)nxn i also prime.

Proof. For any epic or monic matrix U, the associated linear map-
ping

LU} : F® — F" the (quasi-)injective {quasi-)projective n—dimensi-
onal vector space I over F' is an automorphism. Hence each monic
matrix and each epic matrix are units. Thus the Proposition 2.8 can
apply here to the matrix ring Mat,x,(F). Hence we have immedi-

ately a prime matrix A with the maximal image and the irreducible
kernel. [ _

For example, let A = (a,;) € Mat,x(F) be a matrix such that

aj,=1,for1<j<n
a1x =ag; = —1, fortheonlyone k, 1<k <n ,
a,;j =0, ifi£3#k .

..............

(@ujaxn = F « coeviin i is a prime matrix

...........................

\0....... ... 0 1/

For this matnx (a,;)nxn » 4 = (@s;)nxn is an endomorphism with
the maximal image '

ImA = {(xl," N ,xn) I T =T, T, € F }
— F(n—l)
and the irreducible{ simple} kernel

ker A = F(
:{ (QI,O,‘"‘ }Osakiol-'- 10)[a1 =ag, :(]for”#k?l ngn}

COROLLARY 3.2. For any matrix A = (@,,)nxn € Mat,n(F) with
a field F and for any prime matrix Py = (pi;)a € Matpxn(F), if
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ImA <NOImP, and if ker A > 3 ket P,, then P, divides A for each
o.

Recalling the item (3) above the Application 3.1, we only consider
the standard orthogonal bases of all F*. Then the following are ob-
tained by the associate Mat preserving composition of linear mappings,
that is,

Mat(fg) = Mat(f}Mat(g).

APPLICATION 3.3. Forn € N and for any field F with an identity
1,if f: F* — F™ s a prime endomorphism, then the associated matrix
Mait(f) is a prime matrix. Clearly if a square matrix is prime, then
its associated linear mapping is also a prime endomorphism.

For two matrices A, C, we call A an edge factorof CifC =AB---H
or C = H--- BA for some matrices B,--- , H.

REMARK 3.4. For two square matrices A,B € Mat,x,(F), the
following are to be read about similar matrices :

(1) If A, B are simalar in the sense of Linear Algebra, i.e., there is
a unit matrix N € Mat,x,(F) such that A = N-1BN. Then
A is prime if and only if B is prime. However A and B need
not be, in general, similar cosimilar in the sense of this paper.

(2) For A, B as in (1) and for C € Mat,xn(F), A is a factor of C
if and only if B 1s a factor of C, however for an edge factor A
of C', B need not be an edge factor of C in general.

(3) Moreover for stmilar cosimilar matrices A, B € Mat,xn(F), A
is prime if and only if B is prime.

(4) If A, B are simalar cosimilar and C € Mat,x,(F). Then A is
a factor, or an edge factor of C if and only if B is a factor, or
an edge factor of C, respectively.

A METHOD OF FACTORIZING A SQUARE MATRIX. There might
be lots of different ways to factorize any given square matrix A €
Mat, «n(F) .

(1) Find prime square matrices P, such that NImP, > ImA and

ket A > Y ker P, .
(2) Select one P,, of the prime matrices P, .
(3) Find a factor matrix F,, such that A = Fy, P,, or A =
PooFoy -
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(4) Do the step (1) for the factor matrix Fop-
(5) After the steps (1) and (4), go to the steps (1) and (4) .
(6) Select those factors of A and write them properly.

For further applications of prime matrices with distinct size n by m

for n # m, here some illustrations are given.

(1) For n < m and a monomorphism f : F* - F™, let k=m —n
and let partitionize the associated matrix Mat(f) by k by k,
that is, (Mat(f)) = (F11 Fi2) , where Fy; € Matryx, and
Fio € Matgx,. Then we have a prime matrix P € Maty,xm(F),
precisely -

£ F .

P= (D;; 0::) where Dy = (d,;)kxx with
Oif r=j=1foronlyonel, 1<I<k

v { 6., elsewhere , for the Kronecker’s delta §,; ’

i Fip

and where 0, is the zero matrix. This matrix P =
Dy Opn

is a préme factor of <M0at(f) ) .
mXm

km
(2) For n > m and an epimorphism f : F* — F™,
let ¥ = n — m and let partitionize the associated matrix

Mat(f) by m by m, that is (Mat(f)) = (21) , where
1y € Maty,xm and Foy € Matpx,, Then we have a prime
matrix P in Mat,xn(F') such that P = (?; ODTZZ) where
Dii = (dy; )kxk is as in the above (1) and where Oy, is the zero
matrix. This matrix P is a prime factor of ( Mat(f) Onk Jnxn -
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