• Title/Summary/Keyword: $Z_2$

Search Result 7,099, Processing Time 0.041 seconds

ON THE NORMALITY OF TRANSLATED FAMILIES OF TRANSCENDENTAL ENTIRE FUNCTIONS

  • KIM JEONG HEON;KWON KI HO;PARK SUK BONG
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.573-583
    • /
    • 2005
  • For a certain set G in the complex plane, we construct a transcendental entire function f whose translated family ${f(2^{n}z)}$ is normal only at z in G and establish the relation between the normal family and the Julia direction of f(z).

A WEIGHTED COMPOSITION OPERATOR ON THE LOGARITHMIC BLOCH SPACE

  • Ye, Shanli
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.527-540
    • /
    • 2010
  • We characterize the boundedness and compactness of the weighted composition operator on the logarithmic Bloch space $\mathcal{L}\ss=\{f{\in}H(D):sup_D(1-|z|^2)ln(\frac{2}{1-|z|})|f'(z)|$<+$\infty$ and the little logarithmic Bloch space ${\mathcal{L}\ss_0$. The results generalize the known corresponding results on the composition operator and the pointwise multiplier on the logarithmic Bloch space ${\mathcal{L}\ss$ and the little logarithmic Bloch space ${\mathcal{L}\ss_0$.

THE INVARIANCE PRINCIPLE FOR LINEARLY POSITIVE QUADRANT DEPENDENT RANDOM FIELDS

  • Kim, Tae-Sung;Seo, Hye-Young
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.801-811
    • /
    • 1996
  • Let $Z^d$ denote the set of all d-tuples of integers$(d \geq 1, a positive integer)$. The points in $Z^d$ will be denoted by $\underline{m},\underline{n}$, etc., or sometime, when necessary, more explicitly by $(m_1, m_2, \cdots, m_d)$, $(n_1, n_2, \cdots, n_d)$ etc. $Z^d$ is partially ordered by stipulating $\underline{m} \underline{<}\underline{n} iff m_i \leq n_i$ for each i, $1 \leq i \leq d$.

  • PDF

ON A CENTRAL LIMIT THEOREM FOR A STATIONARY MULTIVARIATE LINEAR PROCESS GENERATED BY LINEARLY POSITIVE QUADRANT DEPENDENT RANDOM VECTORS

  • Kim, Tae-Sung
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.119-126
    • /
    • 2002
  • For a stationary multivariate linear process of the form X$_{t}$ = (equation omitted), where {Z$_{t}$ : t = 0$\pm$1$\pm$2ㆍㆍㆍ} is a sequence of stationary linearly positive quadrant dependent m-dimensional random vectors with E(Z$_{t}$) = O and E∥Z$_{t}$$^2$< $\infty$, we prove a central limit theorem.theorem.

A SIMPLY CONNECTED MANIFOLD WITH TWO SYMPLECTIC DEFORMATION EQUIVALENCE CLASSES WITH DISTINCT SIGNS OF SCALAR CURVATURES

  • Kim, Jongsu
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.549-554
    • /
    • 2014
  • We present a smooth simply connected closed eight dimensional manifold with distinct symplectic deformation equivalence classes [[${\omega}_i$]], i = 1, 2 such that the symplectic Z invariant, which is defined in terms of the scalar curvatures of almost K$\ddot{a}$hler metrics in [5], satisfies $Z(M,[[{\omega}_1]])={\infty}$ and $Z(M,[[{\omega}_2]])$ < 0.

ON THE STABILITY OF A BI-JENSEN FUNCTIONAL EQUATION

  • Jun, Kil-Woung;Lee, Yang-Hi;Oh, Jeong-Ha
    • The Pure and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.231-247
    • /
    • 2010
  • In this paper, we investigate the generalized Hyers-Ulam stability of a bi-Jensen functional equation $4f(\frac{x\;+\;y}{2},\;\frac{z\;+\;w}{2})$ = f(x, z) + f(x, w) + f(y, z) + f(y, w). Also, we establish improved results for the stability of a bi-Jensen equation on the punctured domain.