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A SIMPLY CONNECTED MANIFOLD WITH TWO

SYMPLECTIC DEFORMATION EQUIVALENCE CLASSES

WITH DISTINCT SIGNS OF SCALAR CURVATURES

Jongsu Kim

Abstract. We present a smooth simply connected closed eight dimen-
sional manifold with distinct symplectic deformation equivalence classes
[[ωi]], i = 1, 2 such that the symplectic Z invariant, which is defined in
terms of the scalar curvatures of almost Kähler metrics in [5], satisfies
Z(M, [[ω1]]) = ∞ and Z(M, [[ω2]]) < 0.

1. Introduction

Kazdan and Warner classified closed smooth manifolds of dimension > 2
into three classes according to what the scalar curvature functions can be on a
manifold [2, Chapter 4].

Recently, we studied an analogous problem on symplectic manifolds with
almost Kähler metrics. An almost Kähler metric is a Riemannian metric com-
patible with a symplectic structure, see the beginning of Section 2. Two sym-
plectic forms ω0 and ω1 on M are called deformation equivalent, if there exists
a diffeomorphism ψ of M such that ψ∗ω1 and ω0 can be joined by a smooth
homotopy of sympelctic forms, [6]. For a symplectic form ω, its deformation
equivalence class shall be denoted by [[ω]]. We denote by Ω[[ω]] the set of all
almost Kähler metrics compatible with a symplectic form in [[ω]].

We recall the symplectic Z invariant from [5]. For a smooth closed manifold
M of dimension 2n ≥ 4 which admits a symplectic structure, we defined

Z(M, [[ω]]) = sup
g∈Ω[[ω]]

∫

M
sgdvolg

(Volg)
n−1
n

,
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where dvolg, sg, Volg are the volume form, the scalar curvature and the volume
of g respectively, and also defined

Z(M) = sup
[[ω]]

Z(M, [[ω]]).

Then we have a basic inequality;

(1) Z(M, [[ω]]) ≤ sup
ω∈[[ω]]

4πc1(ω) · [ω]n−1

(n−1)!

( [ω]n

n! )
n−1
n

,

where c1(ω) is the first Chern class of ω.
With Z invariants we have posed the following question;

Question 1.1. Let M be a smooth closed manifold of dimension 2n ≥ 4 admit-
ting a symplectic structure.

Is the (necessary and sufficient) condition for a smooth function f on M to
be the scalar curvature of some smooth almost-Kähler metric onM as follows?

(a) f is arbitrary, if 0 < Z(M) ≤ ∞,
(b) f is identically zero or somewhere negative, if Z(M) = 0 and M admits

a scalar-flat almost-Kähler metric,
(c) f is negative somewhere, if otherwise.

Also, is the condition for a smooth function f onM to be the scalar curvature
of some smooth almost-Kähler metric in Ω[[ω]] as follows?

(a
′

) f is arbitrary, if 0 < Z(M, [[ω]]) ≤ ∞,

(b
′

) f is identically zero or somewhere negative, if Z(M, [[ω]]) = 0 and M
admits a scalar-flat almost-Kähler metric in Ω[[ω]],

(c
′

) f is negative somewhere, if otherwise.

This question in turn supplies a motivation to study Z invariants. In pre-
vious work [5], we presented a six dimensional non-simply connected closed
manifold which admits two symplectic deformation classes [[ωi]], i = 1, 2, such
that their Z values have distinct signs.

The main result in this article is to present a simply connected manifold
with two symplectic deformation equivalence classes with similar properties.

2. Catanese-LeBrun example

An almost-Kählermetric on a smooth manifoldM2n of real dimension 2n is a
Riemannian metric g compatible with a symplectic structure ω, i.e., ω(X,Y ) =
g(X, JY ) for an almost complex structure J , where X,Y are tangent vectors at
a point of the manifold; [3]. We call a Riemannian metric g ω-almost Kähler if
g is compatible with ω. An almost-Kähler metric (g, ω, J) is Kähler if and only
if J is integrable. We shall prove the following:

Theorem 2.1. There exists a smooth closed simply connected 8-dimensional

manifold N with symplectic deformation equivalence classes [[ωi]], i = 1, 2 such

that Z(N, [[ω1]]) = ∞ and Z(N, [[ω2]]) < 0.
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The manifold N in the theorem will be the one studied by Catanese and
LeBrun [4]. In fact, N is (diffeomorphic to) the product of two copies of a
complex surface of general type with ample canonical line bundle which is
homeomorphic to R8, the blow up of the complex projective plane CP2 at 8
points in general position. This general type complex surface is obtained as a
small deformation of Barlow’s explicit complex surfaces [1].

In their work, they showed that N admits two distinct holomorpohic defor-
mation classes. But it was not seen whether N admits two distinct symplectic
deformation classes. Examples of smooth manifolds with more than one sym-
plectic deformation class have been an interesting subject to study; refer to [7],
[9] or [10]. To prove this theorem, we need the following:

Proposition 2.2. Let W be a complex surface of general type with ample

canonical line bundle, homeomorphic to R8, the blow up of CP2 at eight points

in general position. Consider a Kähler Einstein metric of negative scalar cur-

vature on W with Kähler form ωW on W . Set N :=W ×W .

Then Z(N, [[ωW + ωW ]]) = −8
√
2π, and it is attained by a Kähler Einstein

metric.

Proof. The argument here follows the scheme in [5, Section 3]. We recall a few
known facts aboutW from [9, Section 4]; there is a homeomorphism ofW onto
R8 which preserves the Chern class c1 and there is a diffeomorphism of W ×W
onto R8 ×R8. Note that R8 admits a Kähler Einstein metric of positive scalar
curvature obtained by Calabi-Yau solution.

Then, the first Chern class ofW can be written as c1(W ) = 3E0−
∑8

i=1Ei ∈
H2(W,R) ∼= R9, where Ei, i = 0, . . . , 8, is the Poincare dual of a homology class

Ẽi, i = 0, . . . , 8 so that Ẽi, i = 0, . . . , 8, form a basis of H2(W,Z) ∼= Z9 and

their intersections satisfy Ẽi · Ẽj = ǫiδij , where ǫ0 = 1 and ǫi = −1 for i ≥ 1.
So, in this basis the intersection form becomes

I =













1 0 · · 0
0 −1 · · 0
. . · · 0
. . · · 0
0 0 0 −1













.

We have the orientation of W induced by the complex structure and the
fundamental class [W ] ∈ H4(W,Z) ∼= Z. As ωW is Kähler Einstein of negative

scalar curvature, we may get [ωW ] = −3E0 +
∑8

i=1Ei by scaling if necessary.
With N =W ×W , by Künneth theorem

H2(N,R) ∼= π∗
1H

2(W )⊕ π∗
2H

2(W ) ∼= R
9 ⊕ R

9,

where πi are the projection of N onto the i-th factor. Then,

c1(N) = π∗
1c1(W ) + π∗

2c1(W ) = π∗
1(3E0 −

8
∑

i=1

Ei) + π∗
2(3E0 −

8
∑

i=1

Ei).
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Consider any smooth path of symplectic forms ωt, 0 ≤ t ≤ δ, on N such that
ω0 = ωW + ωW . We may write

[ωt] =

8
∑

i=0

{ni(t)π
∗
1Ei + li(t)π

∗
2Ei} ∈ H2(N,R)

for some smooth functions ni(t), li(t), i = 0, . . . , 8. As they are connected, their
first Chern class c1(ωt) = c1(N). Using the intersection form we compute;

[ωt]
4([W ×W ]) = [

8
∑

i=0

{ni(t)π
∗
1Ei + li(t)π

∗
2Ei}]4([W ×W ])(2)

= 6{n2
0(t)−

8
∑

i=1

n2
i (t)}{l20(t)−

8
∑

i=1

l2i (t)} > 0.

As n0(0) = −3 and ni(0) = 1, i = 1, . . . , 8, so n2
0(t) >

∑8
i=1 n

2
i (t). We

get n0(t) < 0. Similarly we also have l0(0) = −3, li(0) = 1, i = 1, . . . , 8,

l20(t) >
∑8

i=1 l
2
i (t) and l0(t) < 0.

c1 · [ωt]
3([W ×W ]) = 3{l20(t)−

8
∑

i=1

l2i (t)}{3n0(t) +

8
∑

i=1

ni(t)}

+ 3{n2
0(t)−

8
∑

i=1

n2
i (t)}{3l0(t) +

8
∑

i=1

li(t)}.

Since n2
0(t) >

∑8
i=1 n

2
i (t) and |∑8

i=1 ni(t)| ≤
√
8
√

∑8
i=1 n

2
i (t), we get

3n0(t) +

8
∑

i=1

ni(t) ≤ 3n0(t) + 2
√
2

√

√

√

√

8
∑

i=1

n2
i (t)(3)

< 3n0(t) + 2
√
2
√

n2
0(t) = (3− 2

√
2)n0(t) < 0.

So, c1 · [ωt]
3([W × W ]) < 0. Set An = n2

0(t) −
∑8

i=1 n
2
i (t), Al = l20(t) −

∑8
i=1 l

2
i (t), Bn = 3n0(t)+

∑8
i=1 ni(t) and Bl = 3l0(t)+

∑8
i=1 li(t). From above,

An, Al > 0 and Bn, Bl < 0. By the inequality of arithmetic and geometric
means we have

c1 · [ωt]
3

[ω4
t ]

3/4
=

3

63/4
{AnBl +AlBn

A
3/4
n A

3/4
l

} =
3

63/4
{(An

Al
)

1
4
Bl√
Al

+ (
An

Al
)

−1
4

Bn√
An

}

≤ −61/4

√

BlBn√
AlAn

.
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From (3),

B2
n

An
≥

{3n0(t) + 2
√
2
√

∑8
i=1 n

2
i (t)}2

n2
0(t)−

∑8
i=1 n

2
i (t)

=
(3 − 2

√
2
√
y)2

1− y

where y =
∑8

i=1
n2
i (t)

n2
0(t)

. By calculus,
(3−2

√
2
√
y)2

1−y ≥ 1 for y ∈ [0, 1) with equality

at y = 8
9 . So, we get

B2
n

An
≥ 1 and similarly

B2
l

Al
≥ 1.

We have c1[ωt]
3

[ω4
t ]

3/4 ≤ −6
1
4 ; the equality is achieved exactly when n0(t) = −3,

ni(t) = 1, i = 1, . . . , 8 modulo scaling, i.e., when [ωt] is a positive multiple
of −c1(N). The Kähler form of a product Kähler Einstein metric of negative
scalar curvature on N =W ×W belongs to this class.

As the expression
4πc1(ω)· [ω]n−1

(n−1)!

( [ω]n

n! )
n−1
n

is invariant under a change ω 7→ φ∗(ω) by

any diffeomorphism φ, so from (1) the above inequality gives

Z(N, [[ω0]]) ≤ sup
ω∈[[ω0]]

4π

6
· 243/4 c1 · [ω]

3

[ω4]3/4
≤ −8

√
2π.

As the equality is attained by a Kähler Einstein metric, Z(N, [[ω0]]) = −8
√
2π.
�

Proof of Theorem 2.1. Consider the positive Kähler Einstein metric on R8 and
let ω1 be the Kähler form of the product positive Kähler Einstein metric on
R8 × R8, which is diffeomorphic to N . We have Z(N, [[ω1]]) = ∞ (scaling by
different constants on each factor gives ∞). And let ω2 be ωW + ωW . Then
Z(N, [[ω2]]) < 0 from Proposition 2.2. From the fact that these values are
different, we conclude that [[ω1]] and [[ω2]] are distinct symplectic deformation
equivalence classes. This proves Theorem 2.1. �

In contrast to Z(N, [[ω2]]) < 0, for dimension n ≥ 5 there are no examples
known to have negative Yamabe invariant and Petean proved that the Yamabe
invariant of any simply connected smooth closed manifold is nonnegative; [8].
Of course the Yamabe invariant Y (N) is positive.

Remark 2.3. We get Z(N, [[ω1]]) = ∞, Z(N, [[ω2]]) < 0 and Z(N) = ∞ from
Theorem 2.1. As led by Question 1.1, we therefore expect for N that a smooth
function is the scalar curvature of some almost-Kähler metrics in [[ω2]] if and
only if it is somewhere negative, and that any smooth function is the scalar
curvature of some almost-Kähler metrics.

In fact, we may need certain surjectivity of the derivative of a scalar curva-
ture map at the Kähler negative Einstein metric as well as the Kähler positive
Einstein metric. This kind of argument is already outlined in [5, Section 4].

Question 2.4. Does there exist a simply connected closed 6-dimensional smooth
manifold with two symplectic deformation classes with distinct signs of
Z(·, [[ω]])?
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Question 2.5. Does there exist a closed 4-dimensional smooth manifold with
two symplectic deformation classes [[ωi]], i = 1, 2 such that Z(·, [[ω1]]) > 0 (or
Z(·, [[ω1]]) = 0) and Z(·, [[ω2]]) < 0?

Using further products, one may obtain, for each n ≥ 3, examples of closed
symplectic 2n-dimensional manifolds admitting two symplectic deformation
equivalence classes with distinct signs of Z( , [[ · ]]) invariants.
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