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1. Introduction

Let p be a fixed odd prime number. Throughout this paper, the symbols Zp,
Qp, and Cp denote the ring of p-adic integers, the field of p-adic rational numbers,
and the completion of the algebraic closure of Qp, respectively. The p-adic norm

|.|p is defined by |x|p = p−r for x = pr
s

t
with s, t ∈ Z with (p, s) = (p, t) = 1

and r ∈ Q (see [1-8]).
Let C(Zp) be the space of continuous functions on Zp. The fermionic invariant

measure on Zp is defined by Kim as follows:

µ−1(a+ pnZp) = (−1)a, (1)

where
a+ pnZp = {x ∈ Zp|x ≡ a (mod pn)} ,

and a ∈ Z with 0 ≤ a < pn (see [3,6,7]). From (1), the fermionic p-adic invariant
integral on Zp is defined by Kim as follows:

I(f) =

∫

Zp
f(x)dµ−1(x) = lim

N→∞

pN−1∑
x=0

f(x)(−1)x, (2)
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where f ∈ C(Zp) (see [3,6,7,8]).
Let us we assume that w ∈ Cp with |1− w|p < 1. By (1), we get

∫

Zp
extwxdµ−1(x) =

2

wet − 1
=

∞∑
x=0

En,w
tn

n!
, (see [7]), (3)

where En,w is weighted Euler numbers. The weighted Euler polynomials are also
defined by

∫

Zp
e(x+y)twydµ−1(y) =

2

wet − 1
ext =

∞∑
n=0

En,w(x)
tn

n!
. (4)

By (3) and (4), we get

En,w(x) =

n∑

l=0

(
n

l

)
xn−lEl,w = (x+ Ew)

n,

with the usual convention about replacing (Ew)
n by En,w (see [7]).

The idea for generalizing the fermionic integral is replacing the fermionic Haar
measure with weakly (strongly) ferminoic measure Zp satisfying

∣∣µ−1(a+ pnZp)− µ−1(a+ pn+1Zp)
∣∣
p
≤ δn, (see [3]), (5)

where δn → 0, a is a element of Zp, and δn is independent of a (for strongly
fermionic measure, δn is replaced by Cp−n, where C is a positive constant).

Let f(x) be a function defined on Zp. The fermionic integral of f with respect
to a weakly fermionic measure µ−1 is

∫

Zp
f(x)dµ−1(x) = lim

n→∞

pn−1∑
x=0

f(x)µ−1(x+ pnZp),

if the limit exists.
If µ−1 is a weakly fermionic measure on Zp, then we can define Radon-

Nikodym derivative of µ−1 with respect to the Haar measure on Zp as follows:

fµ−1(x) = lim
n→∞

µ−1(x+ pnZp), (see [3]). (6)

Note that fµ−1 is only a continuous function on Zp. Let UD(Zp) be the space
of uniformly differentiable functions on Zp. For f ∈ UD(Zp), let us define µ−1,f

as follows:

µ−1,f (x+ pnZp) =

∫

x+pnZp
f(x)dµ−1(x), (see [3]), (7)
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where the integral is the ferminoic p-adic invariant integral. From (7), we can
easily note that µ−1,f is a strongly ferminoic measure on Zp. Since

∣∣µ−1,f (x+ pnZp)− µ−1,f (x+ pn+1Zp)
∣∣
p
=

∣∣∣∣∣
pn−1∑
x=0

f(x)(−1)x −
pn∑
x=0

f(x)(−1)x

∣∣∣∣∣
p

=

∣∣∣∣
f(pn)

pn

∣∣∣∣
p

|pn|p ≤ Cp−n,

where C is positive consatnt.
The purpose of this paper is to derive the weighted Lebesgue-Radon-Nikodym’s

type theorem with respect to the fermionic p-adic invariant measure on Zp.

2. The weighted Lebesgue-Radon-Nikodym theorem

In this section, we assume that the weighted function w(x) is defined by
w(x) = wx where w ∈ Cp with |1 − w|p < 1. For any positive integer a and
n with a < pn and f ∈ UD(Zp), we define the strongly weighted ferminonic
measure on Zp as follows:

µf,−w(a+ pnZp) =

∫

a+pnZp
f(x)wxdµ−1(x), (8)

where the integral is the fermionic p-adic invariant integral on Zp. From (8), we
note that

µf,−w(a+ pnZp) = lim
m→∞

pm−1∑
x=0

f(a+ pnx)(−1)a+pnxwa+pnx

= (−1)awa lim
m→∞

pm−n−1∑
x=0

f(a+ pnx)(−1)xwpnx

= (−1)a
∫

Zp
f(a+ pnx)wa+pnxdµ−1(x).

(9)

By (9), we get

µf,−w(a+ pnZp) = (−1)a
∫

Zp
f(a+ pnZp)w

a+pnxdµ−1(x). (10)

Thus, by (10), we have

µαf+βg,−w = αµf,−w + βµg,−w, (11)

where f, g ∈ UD(Zp) and α, β are positive constants. By (8), (9), (10) and (11),
we get ∣∣µf,−w(a+ pnZp)

∣∣
p
≤ ‖fw‖∞, (12)

where ‖fw‖∞ = sup
x∈Zp

|f(x)wx|p.
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Let P (x) ∈ Cp[[x]] be an arbitrary polynomial. Now we show µP,−w is a
strongly weighted fermionic p-adic invariant measure on Zp. Without a loss of
generality, it is enough to prove the statement for P (x) = xk.

For a ∈ Z with 0 ≤ a < pn, we have

µP,−w(a+ pnZp) = lim
m→∞

(−1)a
pm−n−1∑

i=0

(a+ ipn)kwa+ipn

(−1)i. (13)

From binomial theorem, we note that

(a+ ipn)k =

k∑

l=0

ak−l

(
k

l

)
(ipn)l = ak +

(
k

1

)
ak−1pni+ · · ·+ pn

k

ik. (14)

and

wa+ipn

= wa

ipn∑

l=0

(
ipn

l

)
(w − 1)l ≡ wa (mod pn).

Thus, by (13) and (14), we get

µP,−w(a+ pnZp) ≡ (−1)awaak (mod pn)

≡ (−1)aP (a)wa (mod pn).
(15)

For x ∈ Zp, let x ≡ xn (mod pn) and x ≡ xn+1 (mod pn+1), where xn,
xn+1 ∈ Z with 0 ≤ xn < pn and 0 ≤ xn+1 < pn+1.

Then we have∣∣µP,−w(a+ pnZp)− µP,−w(a+ pn+1Zp)
∣∣
p
≤ Cp−n, (16)

where C is positive constant and n À 0.
Let

fµP,−w
(a) = lim

n→∞
µP,−w(a+ pnZp).

Then, by (15) and (16), we see that

fµP,−w(a) = (−1)awaak = (−1)awaP (a). (17)

Since fµP,−w(x) is continuous function on Zp. For x ∈ Zp, we have

fµP,−w
(x) = (−1)xwxxk, (k ∈ Z+). (18)

Let g ∈ UD(Zp). Then, by (16), (17) and (18), we get

∫

Zp
g(x)dµP,−w(x) = lim

n→∞

pn−1∑
x=0

g(x)µP,−w(x+ pnZp)

= lim
n→∞

pn−1∑
x=0

g(x)wxxk(−1)x

=

∫

Zp
g(x)wxxkdµ−1(x).

(19)

Therefore, by (19), we obtain the following theorem.
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Theorem 1. Let P (x) ∈ Cp[[x]] be an arbitrary polynomial. Then µP,−w is a
strongly weighted fermionic p-adic invariant measure on Zp. That is,

fµP,−w
= (−1)xwxP (x) for all x ∈ Zp.

Furthermore, for any g ∈ UD(Zp),∫

Zp
g(x)dµP,−w(x) =

∫

Zp
g(x)P (x)wxdµ−1(x),

where the second integral is fermionic p-adic invariant integral on Zp.

Let f(x) =

∞∑
n=0

an

(
x

n

)
be the Mahler expansion for f ∈ UD(Zp). Then we

note that lim
n→∞

n|an|p = 0. Now, we get fm(x) =

m∑

i=0

ai

(
x

i

)
∈ Cp[[x]]. Thus ,

we have

‖f − fm‖∞ ≤ sup
n≥m

n|an|p. (20)

The function f(x) can be rewritten as f = fm+f −fm. Thus, by (11) and (20),
we get ∣∣µf,−w(a+ pnZp)− µf,−w(a+ pn+1Zp)

∣∣
p

≤ max
{∣∣µf,−w(a+ pnZp)− µfm,−w(a+ pn+1Zp)

∣∣
p
,

∣∣µf−fm,−w(a+ pnZp)− µf−fm,−w(a+ pn+1Zp)
∣∣
p

}
(21)

From Theorem 1 and (21), we note that
∣∣µf−fm,−w(a+ pnZp)

∣∣
p
≤ C∗‖f − fm‖∞ ≤ C1p

−n, (22)

where C∗ and C1 are positive constants. For m À 0, we have ‖f‖∞ = ‖fm‖∞.
So, we see that

∣∣µfm,−w(a+ pnZp)− µfm,−w(a+ pn+1Zp)
∣∣
p

=
∣∣fm(pn)wpn∣∣

p
=

∣∣∣∣
fm(pn)wpn

pn

∣∣∣∣
p

|pn|p

≤ ‖fmwx‖∞p−n ≤ C2p
−n,

(23)

where C2 is a positive constant. By (22), we get
∣∣(−1)af(a)wa − µf,−w(a+ pnZp)

∣∣
p

≤ max
{∣∣waf(a)− fm(a)wa

∣∣
p
,
∣∣wafm(a)− µfm,−w(a+ pnZp)

∣∣
p
,

∣∣µf−fm,−w(a+ pnZp)
∣∣
p

}

≤ max
{∣∣f(a)− fm(a)

∣∣
p
,
∣∣fm(a)− µfm,−w(a+ pnZp)

∣∣
p
, ‖f − fm‖∞

}
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Let us assume that fix ε > 0, and fix m such that ‖f − fm‖ < ε. Then we
have ∣∣(−w)af(a)− µf,−w(a+ pnZp)

∣∣
p
≤ ε for n À 0. (24)

Thus, by (24), we have

fµf,−w
(a) = lim

n→∞
µf,−w(a+ pnZp) = (−1)awaf(a) (25)

Let m be the sufficiently large number such that ‖f − fm‖∞ ≤ p−n. Then we
get

µf,−w(a+ pnZp) = µfm,−w(a+ pnZp) + µf−fm,−w(a+ pnZp)

= (−1)awaf(a) (mod pn).

For g ∈ UD(Zp), we have
∫

Zp
g(x)dµf,−w(x) =

∫

Zp
f(x)g(x)wxdµ−1(x).

Let f be the function from UD(Zp) to Lip(Zp). We easily see that wxµ−1(x+
pnZp) is a strongly weighted p-adic invariant measure on Zp and

∣∣(fw)µ−1(a)− waµ−1(a+ pnZp)
∣∣
p
≤ C3p

−n,

where fw(x) = f(x)wx and C3 is a positive constant and n ∈ Z+.
If µ1,−w is associated with strongly weighted fermionic invarinat measure on

Zp, then we have
∣∣µ1,−w(a+ pnZp)− (fw)µ−1(a)

∣∣
p
≤ C4p

−n,

where n > 0 and C4 is a positive constant.
For n À 0 , we have
∣∣waµ−1(a+ pnZp)− µ1,−w(a+ pnZp)

∣∣
p

≤
∣∣waµ−1(a+ pnZp)− (fw)µ−1(a)

∣∣
p
+
∣∣(fw)µ−1(a)− µ1,−w(a+ pnZp)

∣∣
p

≤K,

(26)

where K is a positive constant. Hence, wµ−1 − µ1,−w is a weighted measure on
Zp. Therefore, we obtain the following theorem.

Theorem 2. Let wµ−1 be a strongly weighted p-adic invariant measure on
Zp, and assume that the fermionic weighted Radon-Nikodym derivative (fw)µ−1

on Zp is uniformly differentiable function. Suppose that µ1,−w is the strongly
weighted fermionic p-adic invariant measure associated with (fw)µ−1 . Then there
exists a weighted measure µ2,−w on Zp such that

wxµ−1(x+ pnZp) = µ1,−w(x+ pnZp) + µ2,−w(x+ pnZp).
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