DOI QR코드

DOI QR Code

ON THE STABILITY OF A CAUCHY-JENSEN FUNCTIONAL EQUATION

  • Jun, Kil-Woung (DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY) ;
  • Lee, Yang-Hi (DEPARTMENT OF MATHEMATICS EDUCATION GONGJU NATIONAL UNIVERSITY OF EDUCATION) ;
  • Cho, Young-Sun (DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY)
  • Published : 2008.07.31

Abstract

In this paper, we prove the stability of a Cauchy-Jensen functional equation $$2f(x+y,\;\frac{z+w}2)$$=f(x, z)+f(x, w)+f(y, z)+f(y, w) in the sense of Th. M. Rassias.

Keywords

References

  1. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. and Appl. 184 (1994), 431-436 https://doi.org/10.1006/jmaa.1994.1211
  2. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224 https://doi.org/10.1073/pnas.27.4.222
  3. Y.-H. Lee, On the Hyers-Ulam-Rassias stability of a Cauchy-Jensen functional equation, J. Chungcheong Math. Soc. 20 (2007), 163-172
  4. W.-G. Park and J.-H. Bae, On a Cauchy-Jensen functional equation and its stability, J. Math. Anal. Appl. 323 (2006), 634-643 https://doi.org/10.1016/j.jmaa.2005.09.028
  5. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300 https://doi.org/10.2307/2042795
  6. S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1968

Cited by

  1. On an equation characterizing multi-cauchy-jensen mappings and its Hyers-Ulam stability vol.35, pp.6, 2015, https://doi.org/10.1016/S0252-9602(15)30059-X
  2. On Stability and Hyperstability of an Equation Characterizing Multi-Cauchy–Jensen Mappings vol.73, pp.2, 2018, https://doi.org/10.1007/s00025-018-0815-8