References
- S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Uni. Hamburg. 27 (1992), 59-64 https://doi.org/10.1007/BF02941618
- W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149-161 https://doi.org/10.1007/s00010-005-2775-9
- A. Gilanyi, Eine zur Parallelogrammgleichung aquivalente Ungleichung, Aequationes Math. 62 (2001), 303-309 https://doi.org/10.1007/PL00000156
- A. Gilanyi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707-710
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224 https://doi.org/10.1073/pnas.27.4.222
- K. W. Jun, S. M. Jung, and Y. H. Lee, A generalization of the Hyers-Ulam-Rassias stability of a functional equation of division, J. Korean Math. Soc. 41 (2004), no. 3, 501-511 https://doi.org/10.4134/JKMS.2004.41.3.501
- K. W. Jun and H. M. Kim, Remarks on the stability of additive functional equation, Bull. Korean Math. Soc. 38 (2001), no. 4, 679-687
- K. W. Jun, On the Hyper-Ulam stability of a generalized quadratic and additive functional equation, Bull. Korean Math. Soc. 42 (2005), no. 1, 133-148 https://doi.org/10.4134/BKMS.2005.42.1.133
- J. Kang, C. Lee, and Y. Lee, A note on the Hyers-Ulam-Rassias stability of a quadratic equation, Bull. Korean Math. Soc. 41 (2004), no. 3, 541-557 https://doi.org/10.4134/BKMS.2004.41.3.541
- G. H. Kim, On the stability of the generalized G-type functional equations, Commun. Korean Math. Soc. 20 (2005), no. 1, 93-106 https://doi.org/10.4134/CKMS.2005.20.1.093
- G. H. Kim, On the stability of functional equations in n-variables and its applications, Commun. Korean Math. Soc. 20 (2005), no. 2, 321-338 https://doi.org/10.4134/CKMS.2005.20.2.321
- G. H. Kim and Y. W. Lee, The stability of the generalized form for the Gamma functional equation, Commun. Korean Math. Soc. 15 (2000), no. 1, 45-50
- G. H. Kim, Y. W. Lee, and K. S. Ji, Modified Hyers-Ulam-Rassias stability of functional equations with square-symmetric operation, Commun. Korean Math. Soc. 16 (2001), no. 2, 211-223
- E. H. Lee, On the solution and stability of the quadratic type functional equations, Commun. Korean Math. Soc. 19 (2004), no. 3, 477-493 https://doi.org/10.4134/CKMS.2004.19.3.477
- Y. W. Lee, On the stability of mappings in Banach algebras, Commun. Korean Math. Soc. 18 (2003), no. 2, 235-242 https://doi.org/10.4134/CKMS.2003.18.2.235
- Y. W. Lee and B. M. Choi, Stability of a Beta-type functional equation with a restricted domain, Commun. Korean Math. Soc. 19 (2004), no. 4, 701-713 https://doi.org/10.4134/CKMS.2004.19.4.701
- Gy. Maksa and P. Volkmann, Characterization of group homomorphisms having values in an inner product space, Publ. Math. Debrecen 56 (2000), 197-200
- C. Park, Generalized Hyers-Ulam-Rassias stability of n-sesquilinear-quadratic mappings on Banach modules over C*-algebras, J. Comput. Appl. Math. 180 (2005), 279-291 https://doi.org/10.1016/j.cam.2004.11.001
- C. Park, Y. Cho, and M. Han, Functional inequalities associated with Jordan-von Neumann type additive functional equations, J. Inequal. Appl. 2007, 41820 (2007), 1-13 https://doi.org/10.1155/2007/41820
- C. G. Park and W. G. Park, On the stability of the Jensen's equation in a Hilbert module, Bull. Korean Math. Soc. 40 (2003), no. 1, 53-61 https://doi.org/10.4134/BKMS.2003.40.1.053
- C. Park and Th. M. Rassias, On a generalized Trif's mapping in Banach modules over a C*-algebra, J. Korean Math. Soc. 43 (2006), no. 2, 323-356 https://doi.org/10.4134/JKMS.2006.43.2.323
- K. H. Park and Y. S Jung, The stability of a functional inequality with the fixed point alternative, Commun. Korean Math. Soc. 19 (2004), no. 2, 253-266 https://doi.org/10.4134/CKMS.2004.19.2.253
- W. G. Park and J. H. Bae On the stability of involutive A-quadratic mappings, Bull. Korean Math. Soc. 43 (2003), no. 4, 737-745 https://doi.org/10.4134/BKMS.2006.43.4.737
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300 https://doi.org/10.2307/2042795
- J. Ratz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), 191-200 https://doi.org/10.1007/s00010-003-2684-8
- T. Trif, Hyers-Ulam-Rassias stability of a quadratic functional equation, Bull. Korean Math. Soc. 40 (2003), no. 2, 253-267 https://doi.org/10.4134/BKMS.2003.40.2.253
- S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960