ON FUNCTIONAL INEQUALITIES ASSOCIATED WITH JORDAN-VON NEUMANN TYPE FUNCTIONAL EQUATIONS

JONG SU AN

ABSTRACT. In this paper, it is shown that if f satisfies the following functional inequality

then f is a bi-additive mapping.

We moreover prove that if f satisfies the following functional inequality (0.2)

$$\|2\sum_{j=1}^{3} f(x_j, z) + 2\sum_{j=1}^{3} f(x_j, w) - f(\sum_{j=1}^{3} x_j, z - w)\| \le \|f(\sum_{j=1}^{3} x_j, z + w)\|$$

then f is an additive-quadratic mapping.

1. Introduction and preliminaries

Ulam [27] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

We are given a group G and a metric group G' with metric $\rho(\cdot, \cdot)$. Given $\epsilon > 0$, does there exist a $\delta > 0$ such that if $f: G \to G'$ satisfies $\rho(f(xy), f(x)f(y)) < \delta$ for all $x, y \in G$, then a homomorphism $h: G \to G'$ exists with $\rho(f(x), h(x)) < \epsilon$ for all $x \in G$?

Hyers [5] considered the case of approximately additive mappings $f: E \to E'$, where E and E' are Banach spaces and f satisfies Hyers inequality

$$||f(x+y) - f(x) - f(y)|| \le \epsilon$$

for all $x, y \in E$. It was shown that the limit

$$L(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$$

Received September 4, 2007; Revised April 30, 2008.

2000 Mathematics Subject Classification. Primary 39B62, 39B82, 46B03.

Key words and phrases. Jordan-von Neumann type bi-additive functional equation, Jordan-von Neumann type additive-quadratic functional equation, Hyers-Ulam-Rassias stability, functional inequality.

372 JONG SU AN

exists for all $x \in E$ and that $L : E \to E'$ is the unique additive mapping satisfying

$$||f(x) - L(x)|| \le \epsilon.$$

Th. M. Rassias [24] provided a generalization of Hyers' Theorem which allows the *Cauchy difference to be unbounded*.

Theorem 1.1 ([24]). Let $f: E \to E'$ be a mapping from a normed vector space E into a Banach space E' subject to the inequality

$$||f(x+y) - f(x) - f(y)|| \le \epsilon(||x||^p + ||y||^p)$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon > 0$ and p < 1. Then the limit

$$L(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$$

exists for all $x \in E$ and $L: E \to E'$ is the unique additive mapping which satisfies

(1.2)
$$||f(x) - L(x)|| \le \frac{2\epsilon}{2 - 2^p} ||x||^p$$

for all $x \in E$. If p < 0 then inequality (1.1) holds for $x, y \neq 0$ and (1.2) for $x \neq 0$. Also, if for each $x \in E$ the mapping f(tx) is continuous in $t \in \mathbb{R}$, then L is linear.

The inequality (1.1) that was introduced for the first time by Th. M. Rassias [24] provided a lot of influence in the development of a generalization of the Hyers-Ulam stability concept. This new concept is known as Hyers-Ulam-Rassias stability of functional equations. Czerwik [1] proved the generalized Hyers-Ulam stability of the quadratic functional equation (see also [8, 23] for a number of other new results). Several functional equations have been investigated in [9] and [26]. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [12, 13, 21]). During the last two decades, a number of papers and research monographs have been published on various generalizations and applications of the Hyers-Ulam-Rassias stability to a number of functional equations mappings (see [6, 7, 10-14, 20, 22, 24]).

Gilányi [3] showed that if f satisfies the functional inequality

$$(1.3) ||2f(x) + 2f(y) - f(xy^{-1})|| \le ||f(xy)||$$

then f satisfies the Jordan-von Neumann functional equation

$$2f(x) + 2f(y) = f(xy) + f(xy^{-1}).$$

See also [17] and [25]. Fechner [2] and Gilányi [4] proved the Hyers-Ulam-Rassias stability of the functional inequality (1.3). Park, Cho, and Han [19] proved the Hyers-Ulam-Rassias stability of functional inequalities associated

with Jordan–von Neumann type additive functional equations. Park [18] proved the Hyers–Ulam–Rassias stability of the additive-quadratic functional equation

$$f(\sum_{j=1}^{3} x_j, z+w) + f(\sum_{j=1}^{3} x_j, z-w) = 2\sum_{j=1}^{3} f(x_j, z) + 2\sum_{j=1}^{3} f(x_j, w),$$

whose solution is called an additive-quadratic mapping.

In Section 2, we prove that if f satisfies the inequality (0.1), then f is a bi-additive mapping.

In Section 3, we prove that if f satisfies the inequality (0.2), then f is an additive-quadratic mapping.

2. Functional inequality associated with Jordan-von Neumann type bi-additive functional equation

Throughout this section, let G be an abelian group. Assume that Y is a Banach space with norm $\|\cdot\|_{Y}$.

Theorem 2.1. Let $f: G \times G \to Y$ be a mapping such that

(2.1)
$$\| \sum_{i,j=1}^{3} f(x_i, y_j) \|_{Y} \le \| f(x_1 + x_2 + x_3, y_1 + y_2 + y_3) \|_{Y}$$

for all $x_1, x_2, x_3, y_1, y_2, y_3 \in G$. Then f is bi-additive.

Proof. Letting
$$x_1 = x_2 = x_3 = y_1 = y_2 = y_3 = 0$$
 in (2.1), we get $||9f(0,0)||_Y \le ||f(0,0)||_Y$.

So
$$f(0,0) = 0$$
.

Letting
$$x_2 = x_3 = y_1 = y_2 = y_3 = 0$$
 in (2.1), we get

$$||3f(x_1,0)||_Y \le ||f(x_1,0)||_Y$$
 for all $x_1 \in G$.

Thus $f(x_1, 0) = 0$ for all $x_1 \in G$.

Letting
$$x_1 = x_2 = x_3 = y_2 = y_3 = 0$$
 in (2.1), we get

$$||3f(0,y_1)||_Y \le ||f(0,y_1)||_Y$$

for all $y_1 \in G$. Thus $f(0, y_1) = 0$ for all $y_1 \in G$.

Letting
$$x_2 = -x_1$$
 and $x_3 = y_2 = y_3 = 0$ in (2.1), we get

$$||f(x_1, y_1) + f(-x_1, y_1)||_Y \le ||f(0, y_1)||_Y = 0$$
 for all $x_1, y_1 \in G$.

Hence

(2.2)
$$f(-x_1, y_1) = -f(x_1, y_1) \quad \text{for all } x_1, y_1 \in G.$$

Letting $x_3 = -x_1 - x_2$ and $y_2 = y_3 = 0$ in (2.1), we get

$$||f(x_1, y_1) + f(x_2, y_1) + f(-x_1 - x_2, y_1)||_Y \le ||f(0, y_1)||_Y = 0$$

for all $x_1, x_2, y_1 \in G$. By (2.2),

$$f(x_1 + x_2, y_1) = -f(-x_1 - x_2, y_1) = f(x_1, y_1) + f(x_2, y_1)$$

374 JONG SU AN

for all $x_1, x_2, y_1 \in G$. Hence the mapping $f: G \times G \to Y$ is additive in the first variable.

Similarly, one can show that the mapping $f: G \times G \to Y$ is additive in the second variable.

Therefore, the mapping $f: G \times G \to Y$ is a bi-additive mapping. \square

3. Functional inequality associated with Jordan-von Neumann type additive-quadratic functional equation

Throughout this section, let G be an abelian group. Assume that H is a Hilbert space with norm $\|\cdot\|_{H}$.

Theorem 3.1. Let $f: G \times G \to H$ be a mapping such that

$$(3.1) \|2\sum_{j=1}^{3} f(x_{j}, z) + 2\sum_{j=1}^{3} f(x_{j}, w) - f(\sum_{j=1}^{3} x_{j}, z - w)\|_{H} \le \|f(\sum_{j=1}^{3} x_{j}, z + w)\|_{H}$$

for all $x_1, x_2, x_3, z, w \in G$. Then f is additive-quadratic.

Proof. Letting $x_1 = x_2 = x_3 = z = w = 0$ in (3.1), we get

$$||11f(0,0)||_H \le ||f(0,0)||_H.$$

So f(0,0) = 0.

Letting $x_1 = x_2 = x_3 = w = 0$ in (3.1), we get

$$||5f(0,z)||_H \le ||f(0,z)||_H.$$

So f(0,z) = 0 for all $z \in G$.

Letting $x_2 = x_3 = z = w = 0$ in (3.1), we get

$$||3f(x_1,0)||_H \le ||f(x_1,0)||_H$$
.

So $f(x_1,0) = 0$ for all $x_1 \in G$.

Letting $x_2 = -x_1$ and $x_3 = w = 0$ in (3.1), we get

$$||2f(x_1,z)+2f(-x_1,z)||_H < ||f(0,z)||_H = 0$$
 for all $x_1,z \in G$.

Hence

(3.2)
$$f(-x_1, z) = -f(x_1, z)$$
 for all $x_1, z \in G$.

Letting $x_3 = -x_1 - x_2$ and w = 0 in (3.1), we get

$$||2f(x_1,z) + 2f(x_2,z) + 2f(-x_1-x_2,z)||_H \le ||f(0,z)||_H = 0$$

for all $x_1, x_2, z \in G$. By (3.2),

$$f(x_1 + x_2, z) = -f(-x_1 - x_2, z) = f(x_1, z) + f(x_2, z)$$

for all $x_1, x_2, z \in G$. Hence the mapping $f: G \times G \to H$ is additive in the first variable.

Letting $x_2 = x_3 = 0$ in (3.1), we get

$$||2f(x_1,z)+2f(x_1,w)-f(x_1,z-w)||_H < ||f(x_1,z+w)||_H$$

П

for all $x_1, z, w \in G$. By Satz 1 of [3], the mapping $f: G \times G \to H$ is quadratic in the second variable.

Therefore, the mapping $f: G \times G \to H$ is an additive-quadratic mapping.

References

- [1] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Uni. Hamburg. 27 (1992), 59-64.
- [2] W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149-161.
- [3] A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math. 62 (2001), 303-309.
- [4] _____, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707-710.
- [5] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
- [6] K. W. Jun, S. M. Jung, and Y. H. Lee, A generalization of the Hyers-Ulam-Rassias stability of a functional equation of division, J. Korean Math. Soc. 41 (2004), no. 3, 501-511.
- [7] K. W. Jun and H. M. Kim, Remarks on the stability of additive functional equation, Bull. Korean Math. Soc. 38 (2001), no. 4, 679-687.
- [8] _____, On the Hyper-Ulam stability of a generalized quadratic and additive functional equation, Bull. Korean Math. Soc. 42 (2005), no. 1, 133-148.
- [9] J. Kang, C. Lee, and Y. Lee, A note on the Hyers-Ulam-Rassias stability of a quadratic equation, Bull. Korean Math. Soc. 41 (2004), no. 3, 541-557.
- [10] G. H. Kim, On the stability of the generalized G-type functional equations, Commun. Korean Math. Soc. 20 (2005), no. 1, 93-106.
- [11] ______, On the stability of functional equations in n-variables and its applications, Commun. Korean Math. Soc. 20 (2005), no. 2, 321-338.
- [12] G. H. Kim and Y. W. Lee, The stability of the generalized form for the Gamma functional equation, Commun. Korean Math. Soc. 15 (2000), no. 1, 45-50.
- [13] G. H. Kim, Y. W. Lee, and K. S. Ji, Modified Hyers-Ulam-Rassias stability of functional equations with square-symmetric operation, Commun. Korean Math. Soc. 16 (2001), no. 2, 211-223.
- [14] E. H. Lee, On the solution and stability of the quadratic type functional equations, Commun. Korean Math. Soc. 19 (2004), no. 3, 477-493.
- [15] Y. W. Lee, On the stability of mappings in Banach algebras, Commun. Korean Math. Soc. 18 (2003), no. 2, 235–242.
- [16] Y. W. Lee and B. M. Choi, Stability of a Beta-type functional equation with a restricted domain, Commun. Korean Math. Soc. 19 (2004), no. 4, 701-713.
- [17] Gy. Maksa and P. Volkmann, Characterization of group homomorphisms having values in an inner product space, Publ. Math. Debrecen 56 (2000), 197–200.
- [18] C. Park, Generalized Hyers-Ulam-Rassias stability of n-sesquilinear-quadratic mappings on Banach modules over C*-algebras, J. Comput. Appl. Math. 180 (2005), 279– 291.
- [19] C. Park, Y. Cho, and M. Han, Functional inequalities associated with Jordan-von Neumann type additive functional equations, J. Inequal. Appl. 2007, 41820 (2007), 1-13.
- [20] C. G. Park and W. G. Park, On the stability of the Jensen's equation in a Hilbert module, Bull. Korean Math. Soc. 40 (2003), no. 1, 53-61.
- [21] C. Park and Th. M. Rassias, On a generalized Trif's mapping in Banach modules over a C*-algebra, J. Korean Math. Soc. 43 (2006), no. 2, 323-356.

376 JONG SU AN

- [22] K. H. Park and Y. S Jung, The stability of a functional inequality with the fixed point alternative, Commun. Korean Math. Soc. 19 (2004), no. 2, 253-266.
- [23] W. G. Park and J. H. Bae On the stability of involutive A-quadratic mappings, Bull. Korean Math. Soc. 43 (2003), no. 4, 737-745.
- [24] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
- [25] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), 191-200.
- [26] T. Trif, Hyers-Ulam-Rassias stability of a quadratic functional equation, Bull. Korean Math. Soc. 40 (2003), no. 2, 253-267.
- [27] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.

DEPARTMENT OF MATHEMATICS EDUCATION PUSAN NATIONAL UNIVERSITY PUSAN 609-735, KOREA E-mail address: jsan63@pusan.ac.kr