• Title/Summary/Keyword: $NF-_{\kappa}B$

Search Result 1,691, Processing Time 0.025 seconds

Oleanane-triterpenoids from Panax stipuleanatus inhibit NF-κB

  • Liang, Chun;Ding, Yan;Song, Seok Bean;Kim, Jeong Ah;Nguyen, Manh Cuong;Ma, Jin Yeul;Kim, Young Ho
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.74-79
    • /
    • 2013
  • In continuation of our research to find biological components from Panax stipuleanatus, four oleanane-type triterpenes (12 to 15) were isolated successively. Fifteen oleanane-type saponins (1 to 15) were evaluated for nuclear factor (NF)-${\kappa}B$ activity using a luciferase reporter gene assay in HepG2 cells. Compounds 6 to 11 inhibited NF-${\kappa}B$, with $IC_{50}$ values between 3.1 to 18.9 ${\mu}M$. The effects on inducible nitric oxide synthase and cyclooxygenase-2 by compounds 8, 10, and 11 were also examined using reverse transcription-polymerase chain reaction. Three compounds (8, 10, and 11) inhibited NF-${\kappa}B$ activity by reducing the concentration of inflammatory factors in HepG2 cells.

Distinct Differences between TNF Receptor 1- and TNF Receptor 2- mediated Activation of NFκB

  • Thommesen, Liv;Laegreid, Astrid
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.281-289
    • /
    • 2005
  • Tumor necrosis factor (TNF) signaling is mediated via two distinct receptors, TNFR2 and TNFR1, which shows partially overlapping signaling mechanisms and biological roles. In the present study, TNFR2 and TNFR1 signal transduction mechanisms involved in activation of $NF{\kappa}B$ and CMV promoter-enhancer were compared with respect to their susceptibility towards inhibitors of intracellular signaling. For this, we used SW480 cells, where we have shown that TNF-signaling can occur independently through each of the two receptors. The TNFR1 response was inhibited by D609, bromophenacyl bromide (BPB), nordihydroguararetic acid (NDGA), and by sodium salicylate, while TNFR2-mediated activation of $NF{\kappa}B$ and CMV promoter-enhancer was resistant to these compounds. The signaling mechanisms known to be affected by these inhibitors include phospholipases as well as redox- and pH-sensitive intracellular components. Our results imply that TNFR2 signaling involved in $NF{\kappa}B$ activation proceeds independently of these inhibitor-sensitive signaling components, indicating distinct signaling pathways not shared with TNFR1.

Effects of persimmon leaf extracts on proteasome activity in HepG2 human liver cancer cells (감잎 추출물이 HepG2 인간 간암 세포의 proteasome 활성에 미치는 영향)

  • Kim, Soyoung;Yoon, Hyungeun
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.393-397
    • /
    • 2019
  • Proteasome inhibitors can promote apoptosis and cell cycle arrest in cancer cells by inhibition of nuclear factorkappaB ($NF-{\kappa}B$) activation. The purpose of this study was to investigate the effects of persimmon leaf extract (PSE) on proteasome activity in HepG2 human liver cancer cells. PSE treatment inhibited the proteasome activity and $NF-{\kappa}B$ activation in a dose-dependent manner in HepG2 human liver cancer cells (p<0.05). PSE treatment increased the population of cells in G2/M and sub-G1 phases. The results suggested that PSE is one of the candidate substances that may be developed into a proteasome inhibitor.

Knockdown of Pyruvate Kinase M Inhibits Cell Growth and Migration by Reducing NF-κB Activity in Triple-Negative Breast Cancer Cells

  • Ma, Chaobing;Zu, Xueyin;Liu, Kangdong;Bode, Ann M.;Dong, Zigang;Liu, Zhenzhen;Kim, Dong Joon
    • Molecules and Cells
    • /
    • v.42 no.9
    • /
    • pp.628-636
    • /
    • 2019
  • Altered genetic features in cancer cells lead to a high rate of aerobic glycolysis and metabolic reprogramming that is essential for increased cancer cell viability and rapid proliferation. Pyruvate kinase muscle (PKM) is a rate-limiting enzyme in the final step of glycolysis. Herein, we report that PKM is a potential therapeutic target in triple-negative breast cancer (TNBC) cells. We found that PKM1 or PKM2 is highly expressed in TNBC tissues or cells. Knockdown of PKM significantly suppressed cell proliferation and migration, and strongly reduced S phase and induced G2 phase cell cycle arrest by reducing phosphorylation of the CDC2 protein in TNBC cells. Additionally, knockdown of PKM significantly suppressed $NF-{\kappa}B$ (nuclear factor kappa-light-chain-enhancer of activated B cells) activity by reducing the phosphorylation of p65 at serine 536, and also decreased the expression of $NF-{\kappa}B$ target genes. Taken together, PKM is a potential target that may have therapeutic implications for TNBC cells.

Inhibition of NF-ĸB, Bcl-2 and COX-2 Gene Expression by an Extract of Eruca sativa Seeds during Rat Mammary Gland Carcinogenesis

  • Abdel-Rahman, Salah;Shaban, Nadia;Haggag, Amany;Awad, Doaa;Bassiouny, Ahmad;Talaat, Iman
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8411-8418
    • /
    • 2016
  • The effect of Eruca sativa seed extract (SE) on nuclear factor kappa B (NF-${\kappa}B$), cyclooxygenase-2 (COX-2) and B-cell lymphoma-2 (Bcl-2) gene expression levels was investigated in rat mammary gland carcinogenesis induced by 7,12 dimethylbenz(${\alpha}$)anthracene (DMBA). DMBA increased NF-${\kappa}B$, COX-2 and Bcl-2 gene expression levels and lipid peroxidation (LP), while, decreased glutathione-S-transferase (GST) and superoxide dismutase (SOD) activities and total antioxidant concentration (TAC) compared to the control group. After DMBA administration, SE treatment reduced NF-${\kappa}B$, COX-2 and Bcl-2 gene expression levels and LP. Hence, SE treatment reduced inflammation and cell proliferation, while increasing apoptosis, GST and SOD activities and TAC. Analysis revealed that SE has high concentrations of total flavonoids, triterpenoids, alkaloids and polyphenolic compounds such as gallic, chlorogenic, caffeic, 3,4-dicaffeoyl quinic, 3,5-dicaffeoyl quinic, tannic, cinnamic acids, catechin and phloridzin. These findings indicate that SE may be considered a promising natural product from cruciferous vegetables against breast cancer, especially given its high antioxidant properties.

Inhibitory Effects of Chimeric Decoy Oligodeoxynucleotide in the Regulation of Transcription Factors NF-κB and Sp1 in an Animal Model of Liver Cirrhosis (간경화 동물모델에서 Chimeric decoy oligodeoxynucleotide로 억제되는 NF-κB와 Sp1 전사인자 발현 억제 효과에 대한 연구)

  • Kim, Kyung-Hyun;Park, Ji-Hyun;Kim, Soo-Jung;Lee, Woo-Ram;Chang, Young-Chae;Kim, Hyun-Chul;Park, Kwan-Kyu
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1360-1367
    • /
    • 2009
  • Liver fibrosis is a process of healing and scarring in response to chronic liver injury. Following injury, an acute inflammation response takes place resulting in moderate cell necrosis and extracellular matrix damage. To develop a novel therapeutic approach in hepatic fibrogenesis, we examined the simultaneous suppression of the transcription factors NF-$\kappa$B and Sp1, which regulate acute inflammation and continuous deposition of extracellular matrix in liver fibrosis. We employed chimeric decoy oligodeoxynucleotide containing the consensus sequences of both NF-$\kappa$B and Sp1 binding sites, to suppress these transcription factors simultaneously. Treatment of chimeric decoy oligodeoxynucleotide reduced the activity of hepatic stellate cells in vitro, and decreased the expression of fibrotic and proinflammatory gene responses in a mouse model of liver fibrosis. These results suggest that chimeric decoy oligodeoxynucleotide strategy can be a potential therapeutic application to prevent liver fibrosis.

The Effects of Ethanol Extract from Atractylodes Chinensis Rhizome on the Mast Cell-Mediated Inflammatory Responses (창출(蒼朮) 에탄올 추출물이 비만세포 매개 염증반응에 미치는 영향)

  • Kim, Sun-Min;Kim, Kyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.24 no.1
    • /
    • pp.45-63
    • /
    • 2011
  • Objective : Atractyloides Chinensis Rhizome (ACR) is widely used in oriental medicine as a remedy for an inflammation and an allergic disease. However, as yet there is no clear explanation of how ACR affects the production of inflammatory cytokine. This study was to determine the effects of ACR on the mast cell-mediated inflammatory responses. Method : The amount of inflammatory cytokine production induced by the phorbol myristate acetate (PMA) plus calcium ionophore(A23187) in the human mast cell line (HMC-1) incubated with various concentrations of ACR was measured. The TNF-${\alpha}$ protein levels were analysised by Western blots. The TNF-${\alpha}$, IL-6 and IL-8 secreted protein levels were measured by the ELISA assay. The TNF-${\alpha}$, IL-6 and IL-8 mRNA levels were measured by the RT-PCR analysis. NF-${\kappa}$B, phospho-I${\kappa}$B and MAPKs were examined by Western blot analysis. The NF-${\kappa}$B promoter activity was examined by a luciferase assay. Results : 1. The expressions of TNF-${\alpha}$ and TNF-${\alpha}$ mRNA were decreased dose-dependently at 0.05-0.2mg/$m\ell$ of ACR and significantly decreased at 0.2mg/$m\ell$. 2. The expressions of IL-6 and IL-6 mRNA were decreased dose-dependently at 0.05-0.2mg/$m\ell$ of ACR and significantly decreased at 0.2mg/$m\ell$. 3. The expressions of IL-8 and IL-8 mRNA were decreased dose-dependently at 0.05-0.2mg/$m\ell$ of ACR and significantly decreased at 0.2mg/$m\ell$ specially. 4. The expressions of Phosphorylated-JNK were decreased, not p38, ERK 5. The expressions of NF-${\kappa}$B were decreased dose-dependently at 0.1-0.2mg/$m\ell$ of ACR. The expressions of Phosphorylated I${\kappa}$B were significantly decreased at 0.2mg/$m\ell$. In addition, ACR suppressed PMA plus A23187-induced NF-${\kappa}$B promoting activity. Conclusion : It is suggested that ACR should suppress through inhibition of NF-${\kappa}$B activity and cytokine production.

Protective effects of Cirsium setidens ethanolic extracts against alcoholic fatty liver injury in rats (곤드레 (Cirsium setidens) 에탄올 추출물의 알코올성 지방간 손상 억제 효과)

  • Kim, Eun-Hye;Chung, Jayong
    • Journal of Nutrition and Health
    • /
    • v.49 no.6
    • /
    • pp.420-428
    • /
    • 2016
  • Purpose: In this study, we investigated the effects of Cirsium setidens ethanolic extract (CS) on the development of alcoholic fatty liver and associated injury. Methods: Sprague-Dawley male rats were fed either Lieber-DeCarli control (C) or ethanol (35.5% of total calories) liquid diet with 0 (E), 100 mg/kgBW CS (E+LCS), or 500 mg/kgBW CS (E+HCS) for 8 weeks. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities as well as TG and cholesterol concentrations in the serum and liver tissues were measured by colorimetric assays. Liver histopathology was examined by Hematoxylin-eosin staining of the fixed liver tissues. Protein levels of phosphorylated-AMP activated protein kinase (p-AMPK), phosphorylated-acetyl CoA carboxylase (p-ACC), phosphorylated-nuclear factor kappa B (p-$NF{\kappa}B$), and $TNF{\alpha}$ were measured by Western blot analyses. Results: Both doses of CS markedly suppressed alcohol-induced lipid droplets accumulation in the liver tissues and significantly inhibited alcohol-induced increases in activities of serum ALT and serum AST. Similarly, CS significantly reduced hepatic and serum TG concentrations. Compared to groups fed alcohol only, CS supplementation strongly increased hepatic levels of p-AMPK and p-ACC. Further, CS significantly inhibited alcohol-induced phosphorylation of $NF{\kappa}B$, which was associated with reduced hepatic protein levels of $TNF{\alpha}$. Conclusion: Our data demonstrated that CS has a protective effect against alcoholic liver injury, which was associated with activation of AMPK and inhibition of $NF{\kappa}B$.

Anti-inflammatory Activities of Methanolic Extracts from Different Rose Cultivars (품종별 장미꽃 메탄올 추출물의 항염증 효과)

  • Lee, Seon-Mi;Li, Lin;Sung, Jeehye;Yang, Jinwoo;Kim, Younghwa;Jeong, Heon Sang;Lee, Junsoo
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.4
    • /
    • pp.551-557
    • /
    • 2015
  • The genus Rosa (Rosaceae) is an abundant source of phenolics and is traditionally used as a food supplement and as herbal medicine. Various plant phenolics are known to have anticancer, antioxidant, and anti-inflammatory properties. In this study, we investigated the anti-inflammatory effects of rose methanolic extracts (RMEs) from four different rose cultivars (Macarena, Onnuri, Oklahoma, and Colorado) in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Our results demonstrated that pretreatment of REMs ($500{\mu}g/mL$) significantly reduced NO production by suppressing iNOS protein expression in LPS-stimulated cells. Anti-inflammatory effects by RMEs were observed in the following order: Oklahoma > Colorado > Onnuri > Macarena. Consistent with this finding, RMEs inhibited the translocation of $NF-{\kappa}B$ from the cytosol to the nucleus via the suppression of $I{\kappa}B{\alpha}$ phosphorylation and also inhibited LPS-stimulated $NF-{\kappa}B$ transcriptional activity. These findings suggest that RMEs exert anti-inflammatory actions and help to elucidate the mechanisms underlying the potential therapeutic values of RMEs. Therefore, RMEs could be regarded as a potential source of natural anti-inflammatory agents.