DOI QR코드

DOI QR Code

Inhibitory Effects of Chimeric Decoy Oligodeoxynucleotide in the Regulation of Transcription Factors NF-κB and Sp1 in an Animal Model of Liver Cirrhosis

간경화 동물모델에서 Chimeric decoy oligodeoxynucleotide로 억제되는 NF-κB와 Sp1 전사인자 발현 억제 효과에 대한 연구

  • Kim, Kyung-Hyun (Department of Pathology, Catholic University of Daegu, College of Medicine) ;
  • Park, Ji-Hyun (Department of Pathology, Catholic University of Daegu, College of Medicine) ;
  • Kim, Soo-Jung (Department of Pathology, Catholic University of Daegu, College of Medicine) ;
  • Lee, Woo-Ram (Department of Pathology, Catholic University of Daegu, College of Medicine) ;
  • Chang, Young-Chae (Department of Pathology, Catholic University of Daegu, College of Medicine) ;
  • Kim, Hyun-Chul (Department of Internal Medicine, Keimyung University School of Medicine, Keimyung University Kidney Institute) ;
  • Park, Kwan-Kyu (Department of Pathology, Catholic University of Daegu, College of Medicine)
  • 김경현 (대구가톨릭대학교 의과대학 병리학교실) ;
  • 박지현 (대구가톨릭대학교 의과대학 병리학교실) ;
  • 김수정 (대구가톨릭대학교 의과대학 병리학교실) ;
  • 이우람 (대구가톨릭대학교 의과대학 병리학교실) ;
  • 장영채 (대구가톨릭대학교 의과대학 병리학교실) ;
  • 김현철 (계명대학교 의과대학 신장연구소) ;
  • 박관규 (대구가톨릭대학교 의과대학 병리학교실)
  • Published : 2009.10.30

Abstract

Liver fibrosis is a process of healing and scarring in response to chronic liver injury. Following injury, an acute inflammation response takes place resulting in moderate cell necrosis and extracellular matrix damage. To develop a novel therapeutic approach in hepatic fibrogenesis, we examined the simultaneous suppression of the transcription factors NF-$\kappa$B and Sp1, which regulate acute inflammation and continuous deposition of extracellular matrix in liver fibrosis. We employed chimeric decoy oligodeoxynucleotide containing the consensus sequences of both NF-$\kappa$B and Sp1 binding sites, to suppress these transcription factors simultaneously. Treatment of chimeric decoy oligodeoxynucleotide reduced the activity of hepatic stellate cells in vitro, and decreased the expression of fibrotic and proinflammatory gene responses in a mouse model of liver fibrosis. These results suggest that chimeric decoy oligodeoxynucleotide strategy can be a potential therapeutic application to prevent liver fibrosis.

간섬유화는 지속적인 간세포 손상에 대한 수복현상으로 일어나며, 급성 염증반응과 같은 손상이 주어진 후에는 간세포의 괴사 및 세포외기질의 축적이 일어나게 된다. 간섬유화에 대한 새로운 치료방법을 모색하기 위하여 본 연구에서는 간섬유화 과정에서 염증 반응과 관련된 NF-$\kappa$B와 세포외기질의 축적과 관련된 Sp1전사인자를 동시에 조절하여 간섬유화 억제효과를 관찰하고자 하였다. 전사인자인 Sp1과 NF-$\kappa$B를 동시에 억제하기 위하여 한 분자 내에 Sp1과 NF-$\kappa$B의 전사인자와 결합하는 부위를 가지는 Chimeric (Chi) decoy oligodeoxynucleotide (ODN)을 제작하였다. Chi decoy ODN은 활성화된 간성상세포에서 간섬유화 와 관련된 유전자 발현을 억제시켰으며, 섬유화 동물모델에서도 간 조직의 염증 반응 및 섬유화 관련 인자의 발현을 현저히 억제시켰다. 따라서 Chi decoy ODN은 간섬유화 및 활성화된 간성상세포의 활성을 억제할 수 있는 유전자 치료제로 고려될 수 있을 것으로 사료된다.

Keywords

References

  1. Baldwin, A. S. Jr. 1996. The NF-kappaB and I kappaB proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649-683 https://doi.org/10.1146/annurev.immunol.14.1.649
  2. Bataller, Rand D. A. Brenner. 2005. Liver fibrosis. J. Clin. Invest. 115, 209-218 https://doi.org/10.1172/JCI24282
  3. Breitkopf, K, S. Hass, E. Wiercinska, M. V. Singer, and S. Dooley. 2005. Anti-TGF-beta strategies for the treatment of chronic liver disease. Alcohol. Clin. Exp. Res. 29, S121-131 https://doi.org/10.1097/01.alc.0000189284.98684.22
  4. Elsharawy, A. M., M. C. Wright, R T. Hay, M. J. Arthur, T. Hughes, and M. J. Bahr. 1999. Persistent activation of nuclear factor-kappaB in cultured rat hepatic stellate cells involves the induction of potentially novel ReI-like factors and prolonged changes in the expression of IkappaB family proteins. Hepatology 30, 761-769 https://doi.org/10.1002/hep.510300327
  5. Friedman, S. 1. 2003. Liver fibrosis: from bench to bedside. J. Hepatol. 38, S38-S53
  6. Geiser, A. G, K J. Busan, S. J. Kim, S. Lafyatis, M. A. O'Reilly, and R Webbink. 1993. Regulation of the transfonning growth factor-beta 1 and -beta 3 promoters by transcription factor Sp1. Gene 129, 223-228 https://doi.org/10.1016/0378-1119(93)90272-5
  7. Gong, W., S. Roth, K Michel, and A. M. Gressner. 1998. Isoforms and splice variant of transforming growth factor beta-binding protein in rat hepatic stellate cells. Gasteroenterology 114, 352-363 https://doi.org/10.1016/S0016-5085(98)70488-3
  8. Gressner, A. M. 1996. Transdifferentiation of hepatic stellate cells (Ito cells) to myofibroblasts: a key event in hepatic fibrogenesis. Kidney. Int. 49, S39-S45
  9. Gressner, A. M., R Weiskirchen, K Breitkopf, and S. Dooley. 2002. Roles of TGF-$\beta$ in hepatic fibrosis. Front. Biosci. 7, D793-D807 https://doi.org/10.2741/gressner
  10. Hellerbrand, c., C. Jobin, l.l. Licato, R B. Sartor, and D. A. Brenner. 1998. Cytokines induce NF-KB in activated but not in quiescent rat hepatic stellate cells. Am. J. Physiol. 275, G269-G268
  11. Inagaki, Y., S. Truter, and P. Greenwel. 1995. Regulation of the a2(1) collagen gene transcription in fat-storing cells derived from a cirrhotic liver. Hepatology 22, 573-579
  12. Inagaki, Y., T. Nemoto, and A. Nakao. 2001. Interaction between GC box binding factors and Smad proteins modulates cell lineage-specific a2(1) collagen gene transcription. J. BioI. Chem. 276, 16573-16579 https://doi.org/10.1074/jbc.M010485200
  13. Kim, K H, E. S. Lee, S. H. Cha, J. H. Park, J. S. Park, Y. C. Chang, and K K Park. 2009. Transcriptional regulation of NF-kappaB by ring type decoy oligodeoxynucleotide in an animal model of nephropathy. Exp. Mol. Pathol. 86, 114-120 https://doi.org/10.1016/j.yexmp.2008.11.011
  14. Kum, Y. S., K H Kim, T. I. Park, I. S. Suh, H K Oh, C. H Cho, J. B. Park, Y. C. Chang, J. H Park, K G Lee, and K K Park. 2007. Antifibrotic effect via the regulation of transcription factor Sp1 in lung fibrosis. Biochem. Biophys. Res. Commun. 363, 368-374 https://doi.org/10.1016/j.bbrc.2007.08.176
  15. Li, D., F. Eng, and S. l. Friedman. 1999. Zf9 (KLF6) regulates cell proliferation and apoptosis in activated stellate cells and NIH3T3 cells. Hepatology 14, 618-633
  16. Lotersztajn, S., B. Julien, F. Teixeira-Clerc, P. Grenard, and A. Mallat. Hepatic fibrosis: molecular mechanisms and drug targets. Ann. Rev. Pharmacol. Toxicol. 45, 605-628 https://doi.org/10.1146/annurev.pharmtox.45.120403.095906
  17. Miyake, T., M. Aoki, H Masaki, T. Kawasaki, M. Oishi, K Kataoka, T. Ogihara, Y. Kaneda, and R Morishita. 2007. Regression of abdominal aortic aneurysms by simultaneous inhibition of nuclear factor kappaB and ets in a rabbit model. Circ. Res. 101, 1175-1184 https://doi.org/10.1161/CIRCRESAHA.107.148668
  18. Miyake, T., M. Aoki, H Nakashima, T. Kawasaki, M. Oishi, K Kataoka, K Tanemoto, T. Ogihara, Y. Kaneda, and R Morishita. 2006. Prevention of abdominal aortic aneurysms by simultaneous inhibition of NFkappaB and ets using chimeric decoy oligonucleotides in a rabbit model. Gene. Ther. 13, 695-704 https://doi.org/10.1038/sj.gt.3302704
  19. Morishita, R, J. Higaki, N. Tomita, and T. Ogihara. 1998. Application of transcription factor 'decoy' strategy as means of gene therapy and study of gene expression in cardiovascular disease. Circ. Res. 82, 1023-1028 https://doi.org/10.1038/sj.gt.3301104
  20. Morishita, R, M. Aoki, and Y. Kaneda. 2000. Oligonucleotide-based gene therapy for cardiovascular disease: are oligonucleotide therapeutics novel cardiovascular drugs? Curro Drug. Targets. 1, 15-23 https://doi.org/10.2174/1389450003349344
  21. Orfila, C., J. C. Lepert, 1. Alric, G Carrera, M. Beraud, and B. Pipy. 2005. Immunohistochemical distribution of activated nuclear factor kappaB and peroxisome proliferator-activated receptors in carbon-tetrachloride-induced7 chronic liver injury in rats. Histochem. Cell BioI. 123, 585-593 https://doi.org/10.1007/s00418-005-0785-2
  22. Pinzani, M. and F. Marra. 2001. Cytokine receptors and signaling in hepatic stellate cells. Semin. Liver. Dis. 21, 397-416 https://doi.org/10.1055/s-2001-17554
  23. Saile, B. and G Ramadori. 2007. Inflammation, damage repair and liver fibrosis-role of cytokines and different cell types. Z. Gastroenterol. 45, 77-86 https://doi.org/10.1055/s-2006-927395
  24. Son, G, Y. limuro, E. Seki, T. Hirano, Y. Kaneda, and J. Fujimoto. 2007. Selective inactivation of NF-kappB in the liver using NF-kappaB decoy suppresses carbontetrachloride-induced liver injury and fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G631-G639 https://doi.org/10.1152/ajpgi.00185.2007
  25. Svegliati-Baroni, G, Y. Inagaki, A. R. Rincon-Sanchez, C. Else, S. Saccomanno, A. Benedetti, F. Ramirez, and M. Rojkind. 2005. Early response of alpha2(I) collagen to acetaldehyde in human hepatic stellate cells in TGF-beta independent. Hepatology 42, 343-352 https://doi.org/10.1002/hep.20798
  26. Tomita, N., R. Morishita, J. Higaki, and T. Ogihara. 1997. A novel strategy for gene therapy and gene regulation analysis using transcription factor decoy oligonucleotides. Exp. Nephrol. 5, 429-434
  27. Tsukada, S. C. J. Parsons, and R. A. Rippe. 2006. Mechanisms of liver fibrosis. Clin. Chim. Acta. 364, 33-60 https://doi.org/10.1016/j.cca.2005.06.014
  28. Verrecchia, F., J. Rossert, and A. Mauviel. 2001. Blocking Spl transcription factor broadly inhibits extracellular matrix gene expression in vitro and in vivo: implications for the treatment of tissue fibrosis. J. Invest. Dermatol. 116, 755-763 https://doi.org/10.1046/j.1523-1747.2001.01326.x
  29. Weiler-Normann, C., J. Herket and A. W. Lohse. 2007. Mouse models of liver fibrosis. Z. Gastroenterol. 45, 43-50 https://doi.org/10.1055/s-2006-927387
  30. Wu, Land P. A. Norton. 1996. Animal models of liver fibrosis. Scand. J. Gastroenterol. 31, 1137-1143 https://doi.org/10.3109/00365529609036901
  31. Wynn, T. A. 2008. Cellular and molecular mechanisms of fibrosis. J. pathol. 214, 199-210 https://doi.org/10.1002/path.2277

Cited by

  1. Effects of Chimeric Decoy Oligodeoxynucleotide in the Regulation of Transcription Factors NF-κB and Sp1 in an Animal Model of Atherosclerosis vol.112, pp.4, 2013, https://doi.org/10.1111/bcpt.12029