DOI QR코드

DOI QR Code

Knockdown of Pyruvate Kinase M Inhibits Cell Growth and Migration by Reducing NF-κB Activity in Triple-Negative Breast Cancer Cells

  • Ma, Chaobing (Department of Breast Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University) ;
  • Zu, Xueyin (China-US (Henan) Hormel Cancer Institute) ;
  • Liu, Kangdong (China-US (Henan) Hormel Cancer Institute) ;
  • Bode, Ann M. (The Hormel Institute, University of Minnesota) ;
  • Dong, Zigang (The Hormel Institute, University of Minnesota) ;
  • Liu, Zhenzhen (Department of Breast Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University) ;
  • Kim, Dong Joon (China-US (Henan) Hormel Cancer Institute)
  • Received : 2019.03.04
  • Accepted : 2019.08.05
  • Published : 2019.09.30

Abstract

Altered genetic features in cancer cells lead to a high rate of aerobic glycolysis and metabolic reprogramming that is essential for increased cancer cell viability and rapid proliferation. Pyruvate kinase muscle (PKM) is a rate-limiting enzyme in the final step of glycolysis. Herein, we report that PKM is a potential therapeutic target in triple-negative breast cancer (TNBC) cells. We found that PKM1 or PKM2 is highly expressed in TNBC tissues or cells. Knockdown of PKM significantly suppressed cell proliferation and migration, and strongly reduced S phase and induced G2 phase cell cycle arrest by reducing phosphorylation of the CDC2 protein in TNBC cells. Additionally, knockdown of PKM significantly suppressed $NF-{\kappa}B$ (nuclear factor kappa-light-chain-enhancer of activated B cells) activity by reducing the phosphorylation of p65 at serine 536, and also decreased the expression of $NF-{\kappa}B$ target genes. Taken together, PKM is a potential target that may have therapeutic implications for TNBC cells.

Keywords

References

  1. Anastasiou, D., Poulogiannis, G., Asara, J.M., Boxer, M.B., Jiang, J.K., Shen, M., Bellinger, G., Sasaki, A.T., Locasale, J.W., Auld, D.S., et al. (2011). Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278-1283. https://doi.org/10.1126/science.1211485
  2. Azoitei, N., Becher, A., Steinestel, K., Rouhi, A., Diepold, K., Genze, F., Simmet, T., and Seufferlein, T. (2016). PKM2 promotes tumor angiogenesis by regulating HIF-1alpha through NF-kappaB activation. Mol. Cancer 15, 3.
  3. Barbie, T.U., Alexe, G., Aref, A.R., Li, S., Zhu, Z., Zhang, X., Imamura, Y., Thai, T.C., Huang, Y., Bowden, M., et al. (2014). Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth. J. Clin. Invest. 124, 5411-5423. https://doi.org/10.1172/JCI75661
  4. Bianchini, G., Balko, J.M., Mayer, I.A., Sanders, M.E., and Gianni, L. (2016). Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol. 13, 674-690. https://doi.org/10.1038/nrclinonc.2016.66
  5. Bonotto, M., Gerratana, L., Poletto, E., Driol, P., Giangreco, M., Russo, S., Minisini, A.M., Andreetta, C., Mansutti, M., Pisa, F.E., et al. (2014). Measures of outcome in metastatic breast cancer: insights from a real-world scenario. Oncologist 19, 608-615. https://doi.org/10.1634/theoncologist.2014-0002
  6. Chaneton, B. and Gottlieb, E. (2012). Rocking cell metabolism: revised functions of the key glycolytic regulator PKM2 in cancer. Trends Biochem. Sci. 37, 309-316. https://doi.org/10.1016/j.tibs.2012.04.003
  7. Chang, B., Sokhn, J., James, E., and Abu-Khalaf, M. (2014). Prolonged progression-free survival in a patient with triple-negative breast cancer metastatic to the liver after chemotherapy and local radiation therapy. Clin. Breast Cancer 14, e61-e64. https://doi.org/10.1016/j.clbc.2013.11.007
  8. Chiavarina, B., Whitaker-Menezes, D., Martinez-Outschoorn, U.E., Witkiewicz, A.K., Birbe, R., Howell, A., Pestell, R.G., Smith, J., Daniel, R., Sotgia, F., et al. (2011). Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth. Cancer Biol. Ther. 12, 1101-1113. https://doi.org/10.4161/cbt.12.12.18703
  9. Christofk, H.R., Vander Heiden, M.G., Harris, M.H., Ramanathan, A., Gerszten, R.E., Wei, R., Fleming, M.D., Schreiber, S.L., and Cantley, L.C. (2008). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230-233. https://doi.org/10.1038/nature06734
  10. Dang, C.V. (2012). Links between metabolism and cancer. Genes Dev. 26, 877-890. https://doi.org/10.1101/gad.189365.112
  11. DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G., and Thompson, C.B. (2008). The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11-20. https://doi.org/10.1016/j.cmet.2007.10.002
  12. Fantin, V.R., St-Pierre, J., and Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 425-434. https://doi.org/10.1016/j.ccr.2006.04.023
  13. Gao, X., Wang, H., Yang, J.J., Liu, X., and Liu, Z.R. (2012). Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol. Cell 45, 598-609. https://doi.org/10.1016/j.molcel.2012.01.001
  14. Han, D., Wei, W., Chen, X., Zhang, Y., Wang, Y., Zhang, J., Wang, X., Yu, T., Hu, Q., Liu, N., et al. (2015). NF-kappaB/RelA-PKM2 mediates inhibition of glycolysis by fenofibrate in glioblastoma cells. Oncotarget 6, 26119-26128. https://doi.org/10.18632/oncotarget.4444
  15. Harris, I., McCracken, S., and Mak, T.W. (2012). PKM2: a gatekeeper between growth and survival. Cell Res. 22, 447-449. https://doi.org/10.1038/cr.2011.203
  16. Hayden, M.S. and Ghosh, S. (2008). Shared principles in NF-kappaB signaling. Cell 132, 344-362. https://doi.org/10.1016/j.cell.2008.01.020
  17. House, C.D., Grajales, V., Ozaki, M., Jordan, E., Wubneh, H., Kimble, D.C., James, J.M., Kim, M.K., and Annunziata, C.M. (2018). $IKK_\varepsilon$ cooperates with either MEK or non-canonical NF-kB driving growth of triple-negative breast cancer cells in different contexts. BMC Cancer 18, 595. https://doi.org/10.1186/s12885-018-4507-2
  18. Israel, A. (2010). The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb. Perspect. Biol. 2, a000158. https://doi.org/10.1101/cshperspect.a000158
  19. Ito-Kureha, T., Koshikawa, N., Yamamoto, M., Semba, K., Yamaguchi, N., Yamamoto, T., Seiki, M., and Inoue, J. (2015). Tropomodulin 1 expression driven by NF-kappaB enhances breast cancer growth. Cancer Res. 75, 62-72. https://doi.org/10.1158/0008-5472.CAN-13-3455
  20. Kim, D.J., Park, Y.S., Kang, M.G., You, Y.M., Jung, Y., Koo, H., Kim, J.A., Kim, M.J., Hong, S.M., Lee, K.B., et al. (2015). Pyruvate kinase isoenzyme M2 is a therapeutic target of gemcitabine-resistant pancreatic cancer cells. Exp. Cell Res. 336, 119-129. https://doi.org/10.1016/j.yexcr.2015.05.017
  21. King, A. and Gottlieb, E. (2009). Glucose metabolism and programmed cell death: an evolutionary and mechanistic perspective. Curr. Opin. Cell Biol. 21, 885-893. https://doi.org/10.1016/j.ceb.2009.09.009
  22. Kroemer, G. and Pouyssegur, J. (2008). Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13, 472-482. https://doi.org/10.1016/j.ccr.2008.05.005
  23. Kuo, W.Y., Hwu, L., Wu, C.Y., Lee, J.S., Chang, C.W., and Liu, R.S. (2017). STAT3/NF-kappaB-regulated lentiviral TK/GCV suicide gene therapy for Cisplatin-resistant triple-negative breast cancer. Theranostics 7, 647-663. https://doi.org/10.7150/thno.16827
  24. Lebert, J.M., Lester, R., Powell, E., Seal, M., and McCarthy, J. (2018). Advances in the systemic treatment of triple-negative breast cancer. Curr. Oncol. 25(Suppl 1), S142-S150. https://doi.org/10.3747/co.25.3954
  25. Luo, W., Hu, H., Chang, R., Zhong, J., Knabel, M., O'Meally, R., Cole, R.N., Pandey, A., and Semenza, G.L. (2011). Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145, 732-744. https://doi.org/10.1016/j.cell.2011.03.054
  26. Luo, W. and Semenza, G.L. (2011). Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells. Oncotarget 2, 551-556. https://doi.org/10.18632/oncotarget.299
  27. Lv, L., Li, D., Zhao, D., Lin, R., Chu, Y., Zhang, H., Zha, Z., Liu, Y., Li, Z., Xu, Y., et al. (2011). Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol. Cell 42, 719-730. https://doi.org/10.1016/j.molcel.2011.04.025
  28. Mazurek, S. (2007). Pyruvate kinase type M2: a key regulator within the tumour metabolome and a tool for metabolic profiling of tumours. Ernst Schering Found. Symp. Proc. (4), 99-124.
  29. Mazurek, S. (2011). Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int. J. Biochem. Cell Biol. 43, 969-980. https://doi.org/10.1016/j.biocel.2010.02.005
  30. Morita, M., Sato, T., Nomura, M., Sakamoto, Y., Inoue, Y., Tanaka, R., Ito, S., Kurosawa, K., Yamaguchi, K., Sugiura, Y., et al. (2018). PKM1 confers metabolic advantages and promotes cell-autonomous tumor cell growth. Cancer Cell 33, 355-367.e7. https://doi.org/10.1016/j.ccell.2018.02.004
  31. Nabel, G.J. and Verma, I.M. (1993). Proposed NF-kappa B/I kappa B family nomenclature. Genes Dev. 7, 2063. https://doi.org/10.1101/gad.7.11.2063
  32. Okazaki, M., Fushida, S., Tsukada, T., Kinoshita, J., Oyama, K., Miyashita, T., Ninomiya, I., Harada, S., and Ohta, T. (2018). The effect of HIF-1alpha and PKM1 expression on acquisition of chemoresistance. Cancer Manag. Res. 10, 1865-1874. https://doi.org/10.2147/CMAR.S166136
  33. Qiao, Y., He, H., Jonsson, P., Sinha, I., Zhao, C., and Dahlman-Wright, K. (2016). AP-1 is a key regulator of Proinflammatory cytokine TNFalphamediated triple-negative breast cancer progression. J. Biol. Chem. 291, 5068-5079. https://doi.org/10.1074/jbc.M115.702571
  34. Tennant, D.A., Duran, R.V., Boulahbel, H., and Gottlieb, E. (2009). Metabolic transformation in cancer. Carcinogenesis 30, 1269-1280. https://doi.org/10.1093/carcin/bgp070
  35. Tennant, D.A., Duran, R.V., and Gottlieb, E. (2010). Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer 10, 267-277. https://doi.org/10.1038/nrc2817
  36. Tutt, A., Tovey, H., Cheang, M.C.U., Kernaghan, S., Kilburn, L., Gazinska, P., Owen, J., Abraham, J., Barrett, S., Barrett-Lee, P., et al. (2018). Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat. Med. 24, 628-637. https://doi.org/10.1038/s41591-018-0009-7
  37. Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033. https://doi.org/10.1126/science.1160809
  38. Wang, H.J., Hsieh, Y.J., Cheng, W.C., Lin, C.P., Lin, Y.S., Yang, S.F., Chen, C.C., Izumiya, Y., Yu, J.S., Kung, H.J., et al. (2014). JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1alpha-mediated glucose metabolism. Proc. Natl. Acad. Sci. U. S. A. 111, 279-284. https://doi.org/10.1073/pnas.1311249111
  39. Wu, X., Zahari, M.S., Ma, B., Liu, R., Renuse, S., Sahasrabuddhe, N.A., Chen, L., Chaerkady, R., Kim, M.S., Zhong, J., et al. (2015). Global phosphotyrosine survey in triple-negative breast cancer reveals activation of multiple tyrosine kinase signaling pathways. Oncotarget 6, 29143-29160. https://doi.org/10.18632/oncotarget.5020
  40. Yamaguchi, N., Ito, T., Azuma, S., Ito, E., Honma, R., Yanagisawa, Y., Nishikawa, A., Kawamura, M., Imai, J., Watanabe, S., et al. (2009). Constitutive activation of nuclear factor-kappaB is preferentially involved in the proliferation of basal-like subtype breast cancer cell lines. Cancer Sci. 100, 1668-1674. https://doi.org/10.1111/j.1349-7006.2009.01228.x
  41. Yang, W., Xia, Y., Hawke, D., Li, X., Liang, J., Xing, D., Aldape, K., Hunter, T., Alfred Yung, W.K., and Lu, Z. (2012a). PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150, 685-696. https://doi.org/10.1016/j.cell.2012.07.018
  42. Yang, W., Zheng, Y., Xia, Y., Ji, H., Chen, X., Guo, F., Lyssiotis, C.A., Aldape, K., Cantley, L.C., and Lu, Z. (2012b). ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol. 14, 1295-1304. https://doi.org/10.1038/ncb2629
  43. Zhou, Z., Li, M., Zhang, L., Zhao, H., Sahin, O., Chen, J., Zhao, J.J., Songyang, Z., and Yu, D. (2018). Oncogenic kinase-induced PKM2 tyrosine 105 phosphorylation converts nononcogenic PKM2 to a tumor promoter and induces cancer stem-like cells. Cancer Res. 78, 2248-2261. https://doi.org/10.1158/0008-5472.CAN-17-2726

Cited by

  1. Cryptanshinone Inhibits the Glycolysis and Inhibits Cell Migration Through PKM2/β-Catenin Axis in Breast Cancer vol.13, 2019, https://doi.org/10.2147/ott.s239134
  2. Epigenetic Regulation and Dietary Control of Triple Negative Breast Cancer vol.7, 2019, https://doi.org/10.3389/fnut.2020.00159
  3. Can NF-κB Be Considered a Valid Drug Target in Neoplastic Diseases? Our Point of View vol.21, pp.9, 2019, https://doi.org/10.3390/ijms21093070
  4. Research progress of nanocarriers for gene therapy targeting abnormal glucose and lipid metabolism in tumors vol.28, pp.1, 2019, https://doi.org/10.1080/10717544.2021.1995081
  5. Hyperglycemia and Chemoresistance in Breast Cancer: From Cellular Mechanisms to Treatment Response vol.11, 2019, https://doi.org/10.3389/fonc.2021.628359
  6. MicroRNA‐370‐3p shuttled by breast cancer cell‐derived extracellular vesicles induces fibroblast activation through the CYLD/Nf‐κB axis to promote breast cancer progr vol.35, pp.3, 2019, https://doi.org/10.1096/fj.202001430rr
  7. GBP5 Serves as a Potential Marker to Predict a Favorable Response in Triple-Negative Breast Cancer Patients Receiving a Taxane-Based Chemotherapy vol.11, pp.3, 2019, https://doi.org/10.3390/jpm11030197
  8. The role of PKM2 nuclear translocation in the constant activation of the NF-κB signaling pathway in cancer-associated fibroblasts vol.12, pp.4, 2019, https://doi.org/10.1038/s41419-021-03579-x
  9. Ginsenoside Rh1 Prevents Migration and Invasion through Mitochondrial ROS-Mediated Inhibition of STAT3/NF-κB Signaling in MDA-MB-231 Cells vol.22, pp.19, 2019, https://doi.org/10.3390/ijms221910458
  10. Anti-Warburg effect by targeting HRD1-PFKP pathway may inhibit breast cancer progression vol.19, pp.1, 2021, https://doi.org/10.1186/s12964-020-00679-7
  11. Therapeutic Influence on Important Targets Associated with Chronic Inflammation and Oxidative Stress in Cancer Treatment vol.13, pp.23, 2019, https://doi.org/10.3390/cancers13236062
  12. Combination of mitochondria impairment and inflammation blockade to combat metastasis vol.341, 2019, https://doi.org/10.1016/j.jconrel.2021.12.015