DOI QR코드

DOI QR Code

Anti-inflammatory Activities of Methanolic Extracts from Different Rose Cultivars

품종별 장미꽃 메탄올 추출물의 항염증 효과

  • Lee, Seon-Mi (Dept. of Food Science and Biotechnology, Chungbuk National University) ;
  • Li, Lin (Dept. of Food Science and Biotechnology, Chungbuk National University) ;
  • Sung, Jeehye (Dept. of Food Science and Biotechnology, Chungbuk National University) ;
  • Yang, Jinwoo (Dept. of Food Science and Biotechnology, Chungbuk National University) ;
  • Kim, Younghwa (School of Food Biotechnology and Nutrition, Kyungsung University) ;
  • Jeong, Heon Sang (Dept. of Food Science and Biotechnology, Chungbuk National University) ;
  • Lee, Junsoo (Dept. of Food Science and Biotechnology, Chungbuk National University)
  • 이선미 (충북대학교 식품생명공학과) ;
  • 이림 (충북대학교 식품생명공학과) ;
  • 성지혜 (충북대학교 식품생명공학과) ;
  • 양진우 (충북대학교 식품생명공학과) ;
  • 김영화 (경성대학교 식품응용공학부) ;
  • 정헌상 (충북대학교 식품생명공학과) ;
  • 이준수 (충북대학교 식품생명공학과)
  • Received : 2015.07.21
  • Accepted : 2015.08.03
  • Published : 2015.08.31

Abstract

The genus Rosa (Rosaceae) is an abundant source of phenolics and is traditionally used as a food supplement and as herbal medicine. Various plant phenolics are known to have anticancer, antioxidant, and anti-inflammatory properties. In this study, we investigated the anti-inflammatory effects of rose methanolic extracts (RMEs) from four different rose cultivars (Macarena, Onnuri, Oklahoma, and Colorado) in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Our results demonstrated that pretreatment of REMs ($500{\mu}g/mL$) significantly reduced NO production by suppressing iNOS protein expression in LPS-stimulated cells. Anti-inflammatory effects by RMEs were observed in the following order: Oklahoma > Colorado > Onnuri > Macarena. Consistent with this finding, RMEs inhibited the translocation of $NF-{\kappa}B$ from the cytosol to the nucleus via the suppression of $I{\kappa}B{\alpha}$ phosphorylation and also inhibited LPS-stimulated $NF-{\kappa}B$ transcriptional activity. These findings suggest that RMEs exert anti-inflammatory actions and help to elucidate the mechanisms underlying the potential therapeutic values of RMEs. Therefore, RMEs could be regarded as a potential source of natural anti-inflammatory agents.

본 연구에서는 장미꽃 methanol 추출물의 항염증 활성을 조사하기 위하여 LPS에 의해 염증이 유도된 RAW 264.7 대식세포에서 염증억제 효과를 알아보았다. 염증 억제의 지표로서는 세포가 방출하는 NO 생성량과 iNOS 및 $NF-{\kappa}B$ 발현 정도를 측정하였다. 실험 결과, RAW 264.7 대식세포에 대한 품종별 장미꽃 methanol 추출물($500{\mu}g/mL$)이 NO의 함량을 감소시키는 경향을 나타내었다. NO의 생성에 영향을 미치는 iNOS 단백질의 발현량을 측정한 결과, LPS 처리에 의해 활성화된 iNOS 단백질의 발현이 장미꽃 methanol 추출물 처리 시 유의적으로 수준으로 억제하는 경향을 보였다. Luciferase activity를 실행한 결과, LPS로 자극한 세포와 비교하였을 때 염증과 관련된 $NF-{\kappa}B$ promoter activity가 장미꽃 methanol 추출물 처리시 현저히 감소하는 경향을 나타내었고, 세포질의 $I{\kappa}B{\alpha}$의 인산화를 저해함으로써 전사요소인 $NF-{\kappa}B$ p65, p50을 핵 속으로 유리시키는 과정을 억제하였다. 이 결과로 장미꽃 methanol 추출물이 전사단계에서 저해활성을 나타낸다는 것을 확인하였다. 본 연구결과, 장미꽃 methanol 추출물은 항염증 효과를 나타냄에 따라 만성 질환 예방을 위한 기능성 식품의 원료로 활용될 수 있을 것으로 여겨진다.

Keywords

References

  1. Albert D, Zundorf I, Dingermann T, Muller WE, Steinhilber D, Werz O. 2002. Hyperforin is a dual inhibitor of cyclooxygenase-1 and 5-lipoxygenase. Biochem Pharmacol 64:1767-1775 https://doi.org/10.1016/S0006-2952(02)01387-4
  2. Bae IK, Min HY, Han AR, Seo EK, Lee SK. 2005. Suppression of lipopolysaccharide-induced expression of inducible nitric oxide synthase by brazilin in RAW 264.7 macrophage cells. Eur J Pharmacol 513:237-242 https://doi.org/10.1016/j.ejphar.2005.03.011
  3. Barnes PJ, Karin M. 1997. Nuclear factor-kB-a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066-1071 https://doi.org/10.1056/NEJM199704103361506
  4. Cai YZ, Xing J, Sun M, Zhan ZQ, Corke H. 2005. Phenolic antioxidants (hydrolysable tannins, flavonols, and anthocyanins) identified by LC-ESI-MS and MALDI-QIT- TOF MS from Rosa chinensis flowers. J Agric Food Chem 53:9940-9948 https://doi.org/10.1021/jf052137k
  5. Chen YC, Yang LL, Lee TJF. 2000. Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-${\kappa}B$ activation. Biochem Pharm 59:1445-1457 https://doi.org/10.1016/S0006-2952(00)00255-0
  6. Cline MJ. 1970. Leukocyte function in inflammation: the ingestion, killing, and digestion of microorganisms. Ser Haematol 3:3-16
  7. Ghosh S, Ksarin M. 2002. Missing pieces in the NF-${\kappa}B$ puzzle. Cell 109:S81-S96 https://doi.org/10.1016/S0092-8674(02)00703-1
  8. Hajhashemi V, Ghannadi A, Hajiloo M. 2010. Analgesic and anti-inflammatory effects of Rosa damascena hydroalcoholic extract and its essential oil in animal models. Iran J Pharm Res 9:163-168
  9. Hardman JG, Limbird LE. 2001. Goodman and Gilman's the Pharmacological Basis of Therapeutics. McGraw-Hill, New York. pp. 687-692
  10. Jeoung YJ, Choi SY, An CS, Jeon YH, Park DK, Lim BO. 2009. Comparative effect on anti-inflammatory activity of the Phellinus lintesus and Phellinus linteus grown in germinated brown rice extracts in murine macrophage RAW 264.7 cells. Korean J Med Crop Sci 17:97-101
  11. Kim JH, Kim DH, Beak SH, Lee HJ, Kim MR, Kwon HJ, Lee CH. 2006. Rengyolone inhibits inducible nitric oxide synthase expression and nitric oxide production by down regulation of NF-${\kappa}B$ and p38 MAP kinase activity in LPS stimulated RAW 264.7 cells. Biochem Pharmacol 71:1198-1205 https://doi.org/10.1016/j.bcp.2005.12.031
  12. Kim YW, Zhao RJ, Park SJ, Lee JR, Cho IJ, Yang CH, Kim SG, Kim SC. 2008. Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-${\kappa}B$-dependent iNOS and proinflammatory cytokines production. Brit J Pharmacol 154:165-173 https://doi.org/10.1038/bjp.2008.79
  13. Lee AK, Sung SH, Kim YC, Kim SG. 2003. Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-alpha and COX-2 expression by sauchinone effects on I-kappa B alpha phosphorylation, C/EBP and AP-1 activation. Brit J Pharmacol 139:11-20 https://doi.org/10.1038/sj.bjp.0705231
  14. Lee HJ, Kim HS, Kim ST, Park D, Hong JT, Kim YB, Joo SS. 2011. Anti-inflammatory effects of hexane fraction from white rose flower extracts via inhibition of inflammatory repertoires. Biomol Ther 19:331-335 https://doi.org/10.4062/biomolther.2011.19.3.331
  15. Lee JH, Lee HJ, Choung MG. 2011. Anthocyanin compositions and biological activities from the red petals of Korean edible rose (Rosa hybrida cv. Noblered). Food Chem 129:272-278 https://doi.org/10.1016/j.foodchem.2011.04.040
  16. Li L, Ham H, Sung J, Kim Y, Jeong HS, Lee J. 2014. Antioxidant activities of methanolic extracts from four different rose cultivars. J Food Nutr Res 2:69-73 https://doi.org/10.12691/jfnr-2-2-2
  17. Mizawa M, Okuno Y, Nakamura SI, Kosaka H. 2000. Antimutagenic activity of flavonoids from Pogostemon cablin. J Agric Food Chem 48:642-647 https://doi.org/10.1021/jf990160y
  18. Morson BC. 1970. Pathology of inflammatory diseases. Proc R Soc Med 63:63
  19. Mueller M, Hobiger S, Jungbauer A. 2010. Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chem 122:987-996 https://doi.org/10.1016/j.foodchem.2010.03.041
  20. Porta C, Larghi P, Rimoldi M, Totaro MG, Allavena P, Mantovani A, Sica A. 2009. Cellular and molecular pathways linking inflammation and cancer. Immunobiology 214:761-777 https://doi.org/10.1016/j.imbio.2009.06.014
  21. Ren W, Qiao Z, Wang H, Zhu L, Zhang L. 2003. Flavonoids: promising anticancer agents. Mol Med Today 23:519-534
  22. Salminen JP, Karonen M, Lempa K, Liimatainen J, Sinkkonen J, Lukkarinen M. 2005. Characterisation of proanthocyanidin aglycones and glycosides from rose hips by high-performance liquid chromatography-mass spectrometry, and their rapid quantification together with vitamin C. J Chromatogr A 1077:170-180 https://doi.org/10.1016/j.chroma.2005.04.073
  23. Sautebin L. 2000. Prostaglandins and nitric oxide as molecular targets for anti-infl ammatory therapy. Fitoterapia 71:S48-57 https://doi.org/10.1016/S0367-326X(00)00181-7
  24. Tapiero H, Ba GN, Couvreur P, Tew KD. 2002. Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed Pharmacother 56:215-222 https://doi.org/10.1016/S0753-3322(02)00193-2
  25. Tateyama C, Honma NB, Namiki KK, Ukiyama TO. 1997. Polyphenol content and antioxidative activity of various flower petals. Nippon Shokuhin Kogyo Gakkaishi 44:290-299
  26. Tateyama CG, Ohta MS, Ukiyama TO. 1997. Free radical scavenging activities of flower petal extracts. Nippon Shokuhin Kogyo Gakkaishi 44:640-646
  27. Terra X, Valls J, Vitrac X, Merrillon JM, Arola L, Ardevol A, Blade C, Fernandez-Larrea J, Pujadas G, Salvado J, Blay M. 2007. Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NF-kB signaling pathway. J Agric Food Chem 55:4357-4365 https://doi.org/10.1021/jf0633185
  28. Thring TSA, Hili P, Naughton DP. 2009. Anti-collagenase, antielastase and antioxidant activities of extracts from 21 plants. BMC Complement Altern Med 9:27-38 https://doi.org/10.1186/1472-6882-9-27

Cited by

  1. Antioxidant compounds and activities of edible roses (Rosa hybrida spp.) from different cultivars grown in Korea vol.60, pp.2, 2017, https://doi.org/10.1007/s13765-017-0261-4
  2. The Functional Effects on Anti-oxidant and Anti-inflammation of Veronica persica Poir. Extracts vol.26, pp.4, 2018, https://doi.org/10.11625/KJOA.2018.26.4.661