DOI QR코드

DOI QR Code

Protective effects of Cirsium setidens ethanolic extracts against alcoholic fatty liver injury in rats

곤드레 (Cirsium setidens) 에탄올 추출물의 알코올성 지방간 손상 억제 효과

  • Kim, Eun-Hye (Department of Food and Nutrition, Kyung Hee University) ;
  • Chung, Jayong (Department of Food and Nutrition, Kyung Hee University)
  • 김은혜 (경희대학교 생활과학대학 식품영양학과) ;
  • 정자용 (경희대학교 생활과학대학 식품영양학과)
  • Received : 2016.10.18
  • Accepted : 2016.11.30
  • Published : 2016.12.31

Abstract

Purpose: In this study, we investigated the effects of Cirsium setidens ethanolic extract (CS) on the development of alcoholic fatty liver and associated injury. Methods: Sprague-Dawley male rats were fed either Lieber-DeCarli control (C) or ethanol (35.5% of total calories) liquid diet with 0 (E), 100 mg/kgBW CS (E+LCS), or 500 mg/kgBW CS (E+HCS) for 8 weeks. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities as well as TG and cholesterol concentrations in the serum and liver tissues were measured by colorimetric assays. Liver histopathology was examined by Hematoxylin-eosin staining of the fixed liver tissues. Protein levels of phosphorylated-AMP activated protein kinase (p-AMPK), phosphorylated-acetyl CoA carboxylase (p-ACC), phosphorylated-nuclear factor kappa B (p-$NF{\kappa}B$), and $TNF{\alpha}$ were measured by Western blot analyses. Results: Both doses of CS markedly suppressed alcohol-induced lipid droplets accumulation in the liver tissues and significantly inhibited alcohol-induced increases in activities of serum ALT and serum AST. Similarly, CS significantly reduced hepatic and serum TG concentrations. Compared to groups fed alcohol only, CS supplementation strongly increased hepatic levels of p-AMPK and p-ACC. Further, CS significantly inhibited alcohol-induced phosphorylation of $NF{\kappa}B$, which was associated with reduced hepatic protein levels of $TNF{\alpha}$. Conclusion: Our data demonstrated that CS has a protective effect against alcoholic liver injury, which was associated with activation of AMPK and inhibition of $NF{\kappa}B$.

본 연구에서는 Sprague-Dawley 종 흰 쥐 수컷을 정상 대조군 (C), 알코올 군 (E), 알코올 + 100 mg/kgBW 곤드레 에탄올 추출물군 (E+LCS), 알코올 + 500 mg/kgBW 곤드레 에탄올 추출물군 (E+HCS)으로 나누어 Lieber-DeCarli control diet 혹은 Lieber-DeCarli ethanol diet를 8주간 공급하였으며, 이때 곤드레 에탄올 추출물은 액상 사료에 직접 섞어 공급하였다. 알코올과 곤드레 에탄올 추출물의 식이 공급 종료 후 간 조직의 지방구 축적 정도를 살펴본 결과, E+LCS군과 E+HSC군은 E군에 비해 지방간 발생이 유의적으로 억제되었으며, 정상 대조군인 C군과 유의적인 차이가 없었다. 이와 비슷하게, 곤드레 에탄올 추출물의 공급은 알코올에 의해 증가된 간 조직과 혈청의 중성지방 농도를 유의적으로 낮추었으며, 혈청 AST와 혈청 ALT 활성도 정상 대조군 수준으로 회복시키는 것으로 나타났다. 한편, 곤드레 에탄올 추출물의 공급은 p-AMPK과 p-ACC 단백질 수준을 농도 의존적으로 증가시켰으며, 두 단백질 모두 E군에 비해 E+HSC군에서 유의적으로 높게 나타났다. 또한 FAS mRNA와 SCD1 mRNA 수준은 E군에 비해 E+HSC군에서 유의적으로 낮게 나타났다. 곤드레 에탄올 추출물은 간 조직에서 알코올 공급에 의해 증가된 $NF{\kappa}B$의 활성을 유의적으로 낮추었으며, $NF{\kappa}B$의 표적 단백질인 $TNF{\alpha}$ 단백질 수준을 농도의존적으로 낮추었다. 본 연구 결과를 통해 곤드레는 알코올에 의한 지방간 발생 및 관련된 간 손상을 유의적으로 억제할 수 있음을 확인하였으며 이 과정에서 AMPK 활성 증가와 $NF{\kappa}B$ 활성 억제가 관여함을 제시하였다.

Keywords

References

  1. Ministry of Health and Welfare, Korea Centers for Disease Control and Prevention. Korea Health Statistics 2013: Korea National Health and Nutrition Examination Survey (KNHANES VI-1). Cheongju: Korea Centers for Disease Control and Prevention; 2014.
  2. Lee SM, Yoon DY, Paik JH, Hyun KR, Kang HR. Socioeconomic impacts of major health risk factor and effectiveness evaluation of regulatory policy report. Seoul: National Health Insurance Service; 2015.
  3. Purohit V, Gao B, Song BJ. Molecular mechanisms of alcoholic fatty liver. Alcohol Clin Exp Res 2009; 33(2): 191-205. https://doi.org/10.1111/j.1530-0277.2008.00827.x
  4. Deleuran T, Gronbaek H, Vilstrup H, Jepsen P. Cirrhosis and mortality risks of biopsy-verified alcoholic pure steatosis and steatohepatitis: a nationwide registry-based study. Aliment Pharmacol Ther 2012; 35(11): 1336-1342. https://doi.org/10.1111/j.1365-2036.2012.05091.x
  5. Haflidadottir S, Jonasson JG, Norland H, Einarsdottir SO, Kleiner DE, Lund SH, Björnsson ES. Long-term follow-up and liverrelated death rate in patients with non-alcoholic and alcoholic related fatty liver disease. BMC Gastroenterol 2014; 14(1): 166. https://doi.org/10.1186/1471-230X-14-166
  6. Lee WB, Kwon HC, Cho OR, Lee KC, Choi SU, Baek NI, Lee KR. Phytochemical constituents of Cirsium setidens Nakai and their cytotoxicity against human cancer cell lines. Arch Pharm Res 2002; 25(5): 628-635. https://doi.org/10.1007/BF02976934
  7. Lee SH, Jin YS, Heo SI, Shim TH, Sa JH, Choi DS, Wang MH. Composition analysis and antioxidative activity from different organs of Cirsium setidens Nakai. Korean J Food Sci Technol 2006; 38(4): 571-6.
  8. Thao NT, Cuong TD, Hung TM, Lee JH, Na M, Son JK, Jung HJ, Fang Z, Woo MH, Choi JS, Min BS. Simultaneous determination of bioactive flavonoids in some selected Korean thistles by highperformance liquid chromatography. Arch Pharm Res 2011; 34(3): 455-461. https://doi.org/10.1007/s12272-011-0314-x
  9. Jeong DM, Jung HA, Choi JS. Comparative antioxidant activity and HPLC profiles of some selected Korean thistles. Arch Pharm Res 2008; 31(1): 28-33. https://doi.org/10.1007/s12272-008-1116-7
  10. Lee JH, Jung HK, Han YS, Yoon YM, Yun CW, Sun HY, Cho HW, Lee SH. Antioxidant effects of Cirsium setidens extract on oxidative stress in human mesenchymal stem cells. Mol Med Rep 2016; 14(4): 3777-3784. https://doi.org/10.3892/mmr.2016.5706
  11. Chung MJ, Lee S, Park YI, Lee J, Kwon KH. Neuroprotective effects of phytosterols and flavonoids from Cirsium setidens and Aster scaber in human brain neuroblastoma SK-N-SH cells. Life Sci 2016; 148: 173-182. https://doi.org/10.1016/j.lfs.2016.02.035
  12. Ahn MJ, Hur SJ, Kim EH, Lee SH, Shin JS, Kim MK, Uchizono JA, Whang WK, Kim DS. Scopoletin from Cirsium setidens Increases Melanin Synthesis via CREB phosphorylation in B16F10 cells. Korean J Physiol Pharmacol 2014; 18(4): 307-311. https://doi.org/10.4196/kjpp.2014.18.4.307
  13. Yoo YM, Nam JH, Kim MY, Choi J, Park HJ. Pectolinarin and pectolinarigenin of cirsium setidens prevent the hepatic injury in rats caused by D-galactosamine via an antioxidant mechanism. Biol Pharm Bull 2008; 31(4): 760-764. https://doi.org/10.1248/bpb.31.760
  14. Yoo YM, Nam JH, Kim MY, Choi J, Park HJ. Pectolinarin and pectolinarigenin of Cirsium setidens prevent the hepatic injury in rats caused by D-galactosamine via an antioxidant mechanism. Biol Pharm Bull 2008; 31(4): 760-764. https://doi.org/10.1248/bpb.31.760
  15. Long YC, Zierath JR. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 2006; 116(7): 1776-1783. https://doi.org/10.1172/JCI29044
  16. Towler MC, Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 2007; 100(3): 328-341. https://doi.org/10.1161/01.RES.0000256090.42690.05
  17. You M, Matsumoto M, Pacold CM, Cho WK, Crabb DW. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 2004; 127(6): 1798-1808. https://doi.org/10.1053/j.gastro.2004.09.049
  18. Garcia-Villafranca J, Guillen A, Castro J. Ethanol consumption impairs regulation of fatty acid metabolism by decreasing the activity of AMP-activated protein kinase in rat liver. Biochimie 2008; 90(3): 460-466. https://doi.org/10.1016/j.biochi.2007.09.019
  19. Mathews S, Xu M, Wang H, Bertola A, Gao B. Animals models of gastrointestinal and liver diseases. Animal models of alcoholinduced liver disease: pathophysiology, translational relevance, and challenges. Am J Physiol Gastrointest Liver Physiol 2014; 306(10): G819-G823. https://doi.org/10.1152/ajpgi.00041.2014
  20. Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev 2009; 89(3): 1025-1278. https://doi.org/10.1152/physrev.00011.2008
  21. Noh H, Lee H, Kim E, Mu L, Rhee YK, Cho CW, Chung J. Inhibitory effect of a Cirsium setidens extract on hepatic fat accumulation in mice fed a high-fat diet via the induction of fatty acid betaoxidation. Biosci Biotechnol Biochem 2013; 77(7): 1424-1429. https://doi.org/10.1271/bbb.130049
  22. Viollet B, Lantier L, Devin-Leclerc J, Hebrard S, Amouyal C, Mounier R, Foretz M, Andreelli F. Targeting the AMPK pathway for the treatment of type 2 diabetes. Front Biosci (Landmark Ed) 2009; 14: 3380-3400.
  23. Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev 2009; 89(3): 1025-1078. https://doi.org/10.1152/physrev.00011.2008
  24. Noh H, Lee H, Kim E, Mu L, Rhee YK, Cho CW, Chung J. Inhibitory effect of a Cirsium setidens extract on hepatic fat accumulation in mice fed a high-fat diet via the induction of fatty acid betaoxidation. Biosci Biotechnol Biochem 2013; 77(7): 1424-1429. https://doi.org/10.1271/bbb.130049
  25. Lee YJ, Kim DB, Lee JS, Cho JH, Kim BK, Choi HS, Lee BY, Lee OH. Antioxidant activity and anti-adipogenic effects of wild herbs mainly cultivated in Korea. Molecules 2013; 18(10): 12937-12950. https://doi.org/10.3390/molecules181012937
  26. Ding RB, Tian K, Huang LL, He CW, Jiang Y, Wang YT, Wan JB. Herbal medicines for the prevention of alcoholic liver disease: a review. J Ethnopharmacol 2012; 144(3): 457-465. https://doi.org/10.1016/j.jep.2012.09.044
  27. You M, Liang X, Ajmo JM, Ness GC. Involvement of mammalian sirtuin 1 in the action of ethanol in the liver. Am J Physiol Gastrointest Liver Physiol 2008; 294(4): G892-G898. https://doi.org/10.1152/ajpgi.00575.2007
  28. Nagata K, Suzuki H, Sakaguchi S. Common pathogenic mechanism in development progression of liver injury caused by nonalcoholic or alcoholic steatohepatitis. J Toxicol Sci 2007; 32(5): 453-468. https://doi.org/10.2131/jts.32.453
  29. McClain CJ, Hill DB, Song Z, Deaciuc I, Barve S. Monocyte activation in alcoholic liver disease. Alcohol 2002; 27(1): 53-61. https://doi.org/10.1016/S0741-8329(02)00212-4
  30. Lee SH, Heo SI, Li L, Lee MJ, Wang MH. Antioxidant and hepatoprotective activities of Cirsium setidens Nakai against CCl4-induced liver damage. Am J Chin Med 2008; 36(1): 107-114. https://doi.org/10.1142/S0192415X0800562X
  31. U.S. Department of Health & Human Services, U.S. Food & Drug Administration, Center for Drug Evaluation and Research (US). Guidance for industry: estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. Rockville (MD): Center for Drug Evaluation and Research; 2005.
  32. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J 2008; 22(3): 659-661. https://doi.org/10.1096/fj.07-9574LSF

Cited by

  1. Nitrite scavenging activity and anti-inflammatory effects of standardized Cirsium setidens extract vol.26, pp.3, 2019, https://doi.org/10.11002/kjfp.2019.26.3.343
  2. 알코올성 간질환에 대한 한의학 연구 경향 분석 : 국내논문을 중심으로 vol.40, pp.3, 2019, https://doi.org/10.22246/jikm.2019.40.3.458
  3. Enhanced alcohol degradation and hepatic protective effects of an Acetobacter Pasteurianus -derived product, CureZyme-ACE, in an acute intoxication rat model vol.36, pp.None, 2016, https://doi.org/10.1186/s42826-020-00050-4
  4. 고려엉겅퀴 재배지에서 발생한 우리대벌레 공간분포 및 기주식물 vol.59, pp.4, 2020, https://doi.org/10.5656/ksae.2020.08.0.028