• Title/Summary/Keyword: $HfO_2$ oxide thickness

Search Result 45, Processing Time 0.03 seconds

Structural and electrical characterizations of $HfO_{2}/HfSi_{x}O_{y}$ as alternative gate dielectrics in MOS devices (MOS 소자의 대체 게이트 산화막으로써 $HfO_{2}/HfSi_{x}O_{y}$ 의 구조 및 전기적 특성 분석)

  • 강혁수;노용한
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.45-49
    • /
    • 2001
  • We have investigated physical and electrical properties of the Hf $O_2$/HfS $i_{x}$/ $O_{y}$ thin film for alternative gate dielectrics in the metal-oxide-semiconductor device. The oxidation of Hf deposited directly on the Si substrate results in the H $f_{x}$/ $O_{y}$ interfacial layer and the high-k Hf $O_2$film simultaneously. Interestingly, the post-oxidation N2 annealing of the H102/H1Si70y thin films reduces(increases) the thickness of an amorphous HfS $i_{x}$/ $O_{y}$ layer(Hf $O_2$ layer). This phenomenon causes the increase of the effective dielectric constant, while maintaining the excellent interfacial properties. The hysteresis window in C-V curves and the midgap interface state density( $D_{itm}$) of Hf $O_2$/HfS $i_{x}$/ $O_{y}$ thin films less than 10 mV and ~3$\times$10$^{11}$ c $m^{-2}$ -eV without post-metallization annealing, respectively. The leakage current was also low (1$\times$10-s A/c $m^2$ at $V_{g}$ = +2 V). It is believed that these excellent results were obtained due to existence of the amorphous HfS $i_{x}$/ $O_{y}$ buffer layer. We also investigated the charge trapping characteristics using Fowler-Nordheim electron injection: We found that the degradation of Hf $O_2$/HfS $i_{x}$/ $O_{y}$ gate oxides is more severe when electrons were injected from the gate electrode.e electrode.e.e electrode.e.

  • PDF

Structural, Electrical and Optical Properties of $HfO_2$ Films for Gate Dielectric Material of TTFTs

  • Lee, Won-Yong;Kim, Ji-Hong;Roh, Ji-Hyoung;Moon, Byung-Moo;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.331-331
    • /
    • 2009
  • Hafnium oxide ($HfO_2$) attracted by one of the potential candidates for the replacement of si-based oxides. For applications of the high-k gate dielectric material, high thermodynamic stability and low interface-trap density are required. Furthermore, the amorphous film structure would be more effective to reduce the leakage current. To search the gate oxide materials, metal-insulator-metal (MIM) capacitors was fabricated by pulsed laser deposition (PLD) on indium tin oxide (ITO) coated glass with different oxygen pressures (30 and 50 mTorr) at room temperature, and they were deposited by Au/Ti metal as the top electrode patterned by conventional photolithography with an area of $3.14\times10^{-4}\;cm^2$. The results of XRD patterns indicate that all films have amorphous phase. Field emission scanning electron microscopy (FE-SEM) images show that the thickness of the $HfO_2$ films is typical 50 nm, and the grain size of the $HfO_2$ films increases as the oxygen pressure increases. The capacitance and leakage current of films were measured by a Agilent 4284A LCR meter and Keithley 4200 semiconductor parameter analyzer, respectively. Capacitance-voltage characteristics show that the capacitance at 1 MHz are 150 and 58 nF, and leakage current density of films indicate $7.8\times10^{-4}$ and $1.6\times10^{-3}\;A/cm^2$ grown at 30 and 50 mTorr, respectively. The optical properties of the $HfO_2$ films were demonstrated by UV-VIS spectrophotometer (Scinco, S-3100) having the wavelength from 190 to 900 nm. Because films show high transmittance (around 85 %), they are suitable as transparent devices.

  • PDF

Electrical characteristic of $SiO_2/HfO_2/Al_2O_3$ (OHA) as engineered tunnel barrier with various heat treatment condition ($SiO_2/HfO_2/Al_2O_3$ (OHA) 터널 장벽의 열처리 조건에 따른 전기적 특성)

  • Son, Jung-Woo;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.344-344
    • /
    • 2010
  • A capacitor with engineered tunnel barrier composed of High-k materials has been fabricated. Variable oxide thickness (VARIOT) barrier consisting of thin SiO2/HfO2/Al2O3 (2/1/3 nm) dielectric layers were used as engineered tunneling barrier. We studied the electrical characteristics of multi stacked tunnel layers for various RTA (Rapid Thermal Anneal) and FGA (Forming Gas Anneal) temperature.

  • PDF

Thermal Stability and Electrical Properties of $HfO_xN_y$ ($HfO_2$) Gate Dielectrics with TaN Gate Electrode (TaN 게이트 전극을 가진 $HfO_xN_y$ ($HfO_2$) 게이트 산화막의 열적 안정성)

  • Kim, Jeon-Ho;Choi, Kyu-Jeong;Yoon, Soon-Gil;Lee, Won-Jae;Kim, Jin-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.54-57
    • /
    • 2003
  • [ $HfO_xN_y$ ] films using a hafnium tertiary-butoxide $(Hf[OC(CH_3)_3]_4)$ in plasma and $N_2$ ambient were prepared to improve the thermal stability of hafnium-based gate dielectrics. A 10% nitrogen incorporation into $HfO_2$ films showed a smooth surface morphology and a crystallization temperature as high as $200^{\circ}C$ compared with pure $HfO_2$ films. The $TaN/HfO_xN_y/Si$ capacitors showed a stable capacitance-voltage characteristics even at post-metal annealing temperature of $1000^{\circ}C$ in $N_2$ ambient and a constant value of 1.6 nm EOT (equivalent oxide thickness) irrespective of an increase of PDA and PMA temperature. Leakage current densities of $HfO_xN_y$ capacitors annealed at PDA temperature of 800 and $900^{\circ}C$, respectively were approximately one order of magnitude lower than that of $HfO_2$ capacitors.

  • PDF

Improvement of Electrical and Mechanical Characteristics of Organic Thin Film Transistor with Organic/Inorganic Laminated Gate Dielectric (유연성 유기 박막트랜지스터 적용을 위한 다층 게이트 절연막의 전기적 및 기계적 특성 향상 연구)

  • Noh, H.Y.;Seol, Y.G.;Kim, S.I.;Lee, N.E.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • In this work, improvement of mechanical and electrical properties of gate dielectric layer for flexible organic thin film transistor (OTFT) devices was investigated. In order to increase the mechanical flexibility of PVP (poly(4-vinyl phenol) organic gate dielectric, a very thin inorganic $HfO_2$ layers with the thickness of $5{\sim}20nm$ was inserted in between the spin-coated PVP layers. Insertion of the inorganic $HfO_2$ in the laminated organic/inorganic structure of PVP/$HfO_2$/PVP layer led to a dramatic reduction in the leakage current compared to the pure PVP layer. Under repetitive cyclic bending, the leakage current density of the laminated PVP/$HfO_2$/PVP layer with the thickness of 20-nm $HfO_2$ layer was not changed, while that of the single PVP layer was increased significantly. Mechanical flexibility tests of the OTFT devices by cyclic bending with 5 mm bending radius indicated that the leakage current of the laminated PVP/$HfO_2$(20 nm)/PVP gate dielectric in the device structure was also much smaller than that of the single PVP layer.

Study on the Direct Bonding of Silicon Wafers by Cleaning in $HNO_3:H_2_O2:HF$ (HNO$_3:H_2O_2$ : HF 세척법을 이용한 실리콘 직접 접합 기술에 관한 연구)

  • Joo, C.M.;Choi, W.B.;Kim, Y.S.;Kim, D.N.;Lee, J.S.;Sung, M.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3310-3312
    • /
    • 1999
  • We have studied the method of silicon direct bonding using the mixture of $HNO_$, $H_2O_2$, and HF chemicals called the controlled slight etch (CSE) solution for the effective wafer cleaning. CSE, two combinations of oxidizing and etching agents, have been used to clean the silicon surfaces prior to wafer bonding. Two wafers of silicon and silicon dioxide were contacted each other at room temperature and postannealed at $300{\sim}1100^{\circ}C$ in $N_2$ ambient for 2.5 h. We have cleaned silicon wafers with the various HF concentrations and characterized the parameters with regard to surface roughness, chemical nature, chemical oxide thickness, and bonding energy. It was observed that the chemical oxide thickness on silicon wafer decreased with increasing HF concentrations. The initial interfacial energy and final energy postannealed at $1100^{\circ}C$ for 2.5h measured by the crack propagation method was 122 $mJ/m^2$ and 2.96 $mJ/m^2$, respectively.

  • PDF

Novel Robust Structure and High k Dielectric Material for 90 nm DRAM Capacitor

  • Park, Y.K.;Y.S. Ahn;Lee, K.H.;C.H. Cho;T.Y. Chung;Kim, Kinam
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.2
    • /
    • pp.76-82
    • /
    • 2003
  • The robust stack storage node and sufficient cell capacitance for high performance is indispensable for 90 nm DRAM capacitor. For the first time, we successfully demonstrated MIS capacitor process integration for 90 nm DRAM technology. Novel cell layout and integration technology of 90 nm DRAM capacitor is proposed and developed, and it can be extended to the next generation DRAM. Diamond-shaped OCS with 1.8 um stack height is newly developed for large capacitor area with better stability. Furthermore, the novel $Al_2O_3/HfO_2$ dielectric material with equivalent oxide thickness (EOT) of 25 ${\AA}$ is adopted for obtaining sufficient cell capacitance. The reliable cell capacitance and leakage current of MIS capacitor is obtained with ~26 fF/cell and < 1 fA/ceil by $Al_2O_3/HfO_2$ dielectric material, respectively.

Local structure of transparent flexible amorphous M-In-ZnO semiconductor

  • Son, L.S.;Kim, K.R.;Yang, D.S.;Lee, J.C.;Sung, N.;Lee, J.;Kang, H.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.164-164
    • /
    • 2010
  • The impurity doped ZnO has been extensively studied because of its optoelectric properties. GIZO (Ga-In-Zn-O) amorphous oxide semiconductors has been widely used as transparent flexible semiconductor material. Recently, various amorphous transparent semiconductors such as IZO (In-Zn-O), GIZO, and HIZO (Hf-In-Zn-O) were developed. In this work, we examined the local structures of IZO, GIZO, and HIZO. The local coordination structure was investigated by the extended X-ray absorption fine structure. The IZO, GIZO and HIZO thin films ware deposited on the glass substrate with thickness of 400nm by the radio frequency sputtering method. The targets were prepared by the mixture of $In_2O_3$, ZnO and $HfO_2$ powders. The percent ratio of In:Zn in IZO, Ga:In:Zn in GIZO and Hf:In:Zn in HIZO was 45:55, 33:33:33 and 10:35:55, respectively. In this work, we found that IZO, GIZO and HIZO are all amorphous and have a similar local structure. Also, we obtained the bond distances of $d_{Ga-O}=1.85\;{\AA}$, $d_{Zn-O}=1.98\;{\AA}$, $d_{Hf-O}=2.08\;{\AA}$, $d_{In-O}=2.13\;{\AA}$.

  • PDF

Study of Al Doping Effect on HfO2 Dielectric Thin Film Using PEALD (PEALD를 이용한 HfO2 유전박막의 Al 도핑 효과 연구)

  • Min Jung Oh;Ji Na Song;Seul Gi Kang;Bo Joong Kim;Chang-Bun Yoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.125-128
    • /
    • 2023
  • Recently, as the process of the MOS device becomes more detailed, and the degree of integration thereof increases, many problems such as leakage current due to an increase in electron tunneling due to the thickness of SiO2 used as a gate oxide have occurred. In order to overcome the limitation of SiO2, many studies have been conducted on HfO2 that has a thermodynamic stability with silicon during processing, has a higher dielectric constant than SiO2, and has an appropriate band gap. In this study, HfO2, which is attracting attention in various fields, was doped with Al and the change in properties according to its concentration was studied. Al-doped HfO2 thin film was deposited using Plasma Enhanced Atomic Layer Deposition (PEALD), and the structural and electrical characteristics of the fabricated MIM device were evaluated. The results of this study are expected to make an essential cornerstone in the future field of next-generation semiconductor device materials.

Variations in Tunnel Electroresistance for Ferroelectric Tunnel Junctions Using Atomic Layer Deposited Al doped HfO2 Thin Films (하부전극 산소 열처리를 통한 강유전체 터널접합 구조 메모리 소자의 전기저항 변화 특성 분석)

  • Bae, Soo Hyun;Yoon, So-Jung;Min, Dae-Hong;Yoon, Sung-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.433-438
    • /
    • 2020
  • To enhance the tunneling electroresistance (TER) ratio of a ferroelectric tunnel junction (FTJ) device using Al-doped HfO2 thin films, a thin insulating layer was prepared on a TiN bottom electrode, for which TiN was preliminarily treated at various temperatures in O2 ambient. The composition and thickness of the inserted insulating layer were optimized at 600℃ and 50 Torr, and the FTJ showed a high TER ratio of 430. During the heat treatments, a titanium oxide layer formed on the surface of TiN, that suppressed oxygen vacancy generation in the ferroelectric thin film. It was found that the fabricated FTJ device exhibits two distinct resistance states with higher tunneling currents by properly heat-treating the TiN bottom electrode of the HfO2-based FTJ devices in O2 ambient.