DOI QR코드

DOI QR Code

Variations in Tunnel Electroresistance for Ferroelectric Tunnel Junctions Using Atomic Layer Deposited Al doped HfO2 Thin Films

하부전극 산소 열처리를 통한 강유전체 터널접합 구조 메모리 소자의 전기저항 변화 특성 분석

  • Bae, Soo Hyun (Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University) ;
  • Yoon, So-Jung (Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University) ;
  • Min, Dae-Hong (Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University) ;
  • Yoon, Sung-Min (Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University)
  • 배수현 (경희대학교 정보전자신소재공학과) ;
  • 윤소정 (경희대학교 정보전자신소재공학과) ;
  • 민대홍 (경희대학교 정보전자신소재공학과) ;
  • 윤성민 (경희대학교 정보전자신소재공학과)
  • Received : 2020.07.29
  • Accepted : 2020.08.26
  • Published : 2020.11.01

Abstract

To enhance the tunneling electroresistance (TER) ratio of a ferroelectric tunnel junction (FTJ) device using Al-doped HfO2 thin films, a thin insulating layer was prepared on a TiN bottom electrode, for which TiN was preliminarily treated at various temperatures in O2 ambient. The composition and thickness of the inserted insulating layer were optimized at 600℃ and 50 Torr, and the FTJ showed a high TER ratio of 430. During the heat treatments, a titanium oxide layer formed on the surface of TiN, that suppressed oxygen vacancy generation in the ferroelectric thin film. It was found that the fabricated FTJ device exhibits two distinct resistance states with higher tunneling currents by properly heat-treating the TiN bottom electrode of the HfO2-based FTJ devices in O2 ambient.

Keywords

References

  1. J. F. Scott and C. A. Paz de Araujo, Science, 246, 1400 (1989). [DOI: https://doi.org/10.1126/science.246.4936.1400]
  2. T. Kim and S. Jeon, IEEE Trans. Electron Devices, 65, 1771 (2018). [DOI: https://doi.org/10.1109/TED.2018.2816968]
  3. M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, and C. S. Hwang, Adv. Energy Mater., 4, 140061 (2014). [DOI: https://doi.org/10.1002/aenm.201400610]
  4. J. Muller, T. S. Boscke, U. Schroder, S. Mueller, D. Brauhaus, U. Bottger, L. Frey, and T. Mikolajick, Nano Lett., 12, 4318 (2012). [DOI: https://doi.org/10.1021/nl302049k]
  5. P. Polakowski, S. Riedel, W. Weinreich, M. Rudolf, J. Sundqvist, K. Seidel, and J. Muller, Proc. 2014 IEEE 6th International Memory Workshop (IMW) (IEEE, Taipei, Taiwan, 2014) p. 1. [DOI: https://doi.org/10.1109/IMW.2014.6849367]
  6. A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, Nat. Nanotechnol., 7, 101 (2012). [DOI: https://doi.org/10.1038/nnano.2011.213]
  7. M. Y. Zhuravlev, R. F. Sabirianov, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett., 94, 246802 (2005). [DOI: https://doi.org/10.1103/PhysRevLett.94.246802]
  8. H. Kohlstedt, N. A. Pertsev, J. R. Contreras, and R. Waser, Phys. Rev. B, 72, 125341 (2005). [DOI: https://doi.org/10.1103/PhysRevB.72.125341]
  9. L. Esaki, R. B. Lailbowitz, and P. J. Stiles, IBM Tech. Discl. Bull., 13, 2161 (1971).
  10. D. Pantel and M. Alexe, Phys. Rev. B, 82, 134105 (2010). [DOI: https://doi.org/10.1103/PhysRevB.82.134105]
  11. M. Kobayashi, Y. Tagawa, F. Mo, T. Saraya, and T. Hiramoto, IEEE J. Electron Devices Soc., 7, 134 (2019). [DOI: https://doi.org/10.1109/JEDS.2018.2885932]
  12. S. Dahle, R. Gustus, W. Viol, and W. Maus-Friedrichs, Plasma Chem. Plasma Process., 32, 1109 (2012). [DOI: https://doi.org/10.1007/s11090-012-9392-x]