• 제목/요약/키워드: $^7Li$

검색결과 2,931건 처리시간 0.028초

해운대 해안의 시기별 해안선 변화량 분석 (Time Series Coastline Change Analysis of Haeundae Beach)

  • 이재원;김용석;이인수
    • 대한토목학회논문집
    • /
    • 제29권5D호
    • /
    • pp.655-662
    • /
    • 2009
  • 본 연구에서는 해안선 변화량을 분석하기 위하여 다년간에 걸쳐 모니터링을 실시하였다. 실험대상지역은 해운대 해수욕장을 선정하였으며, 2005년부터 2008년까지 4년에 걸쳐 RTK-GPS 측량자료와 항공 LiDAR 자료를 수집하였다. 또한 2006년과 2009년에는 항공 LiDAR 측량을 실시하였으며, 상호 비교 분석을 통하여 시기별 해안선 변화를 분석하고자 한다. 해운대 해안의 해안선 길이는 RTK-GPS 결과(7회 측정) 평균 1,347m로 나타났으며, 항공 LiDAR의 경우(2회 측정)는 평균 1,378m로 조사되었다. 또한 2008년 11월 측정에서는 해안선 길이가 평균치 보다 약 4.5% 감소함을 알 수 있었으며, 침식과 퇴적에 대해서는 해안선 좌우측이 침식되었고 중앙부분을 중심으로 바다 쪽으로 약 3~7m정도가 퇴적됨을 알 수 있었다. 이는 양쪽 부분의 모래가 파도와 조류의 영향으로 중앙부분으로 이동한 것으로 파악된다. 그리고 해마다 해안선의 길이는 축소되고 있는 것으로 파악되었으며, 해빈 폭은 2~7m정도 증가되고 있음을 알 수 있었다.

$UO_2-5wt%CeO_2$분말에서 소결온도, 소결분위기 및 $Li_2O$ 첨가에 따른 소결성 변화

  • 김시형;정창용;김한수;나상호;이영우
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(2)
    • /
    • pp.186-191
    • /
    • 1998
  • $UO_2$-5wt%CeO$_2$ 분말에서 소결온도(1600, 1$700^{\circ}C$), 소결분위기(H$_2$, $N_2$-7vol.%H$_2$) 및 Li$_2$O 첨가량(0.05-2wt%)에 따른 소결성의 변화를 관찰하였다. $UO_2$-5wt%CeO$_2$를 attrition mill에서 2 시간까지 분쇄한 후, 1$700^{\circ}C$에서 H$_2$, N2-7vol.%H$_2$ 분위기에서 소결하면 소결밀도가 각각 10.46, 10.36 g/㎤이지만, 각 분위기에서 소결체내의 결경립크기가 일정하지 않고 Ce agg1omerate도 소결체내의 여러 곳에 분포되어 있어 분말처리만으로 소결성을 개선하는데는 한계가 있었다. 반면에, $UO_2$-5wt%CeO$_2$에 0.lwt%Li$_2$O를 첨가하여 1 시간동안 분쇄란 후, 1$600^{\circ}C$에서 H$_2$$N_2$-7vol.%H$_2$ 분위기로 소결하면 밀도는 각각 10.51, 10.48 g/㎤이었고, 결정립크기는 각각 8.9, 42.1 $\mu\textrm{m}$이었다. 즉, Li$_2$O의 첨가에 의해 밀도와 결정립크기가 모두 증가했으며, H$_2$ 분위기보다는 $N_2$-7vol.%H$_2$ 분위기에서 결정립이 더 크게 성장하였고, 1$700^{\circ}C$에서도 유사한 경향을 나타내었다. $UO_2$-5wt%CeO$_2$와 이 조성에 0.lwt%Li$_2$O를 첨가한 분말들을 H$_2$$N_2$-7vol.%H$_2$ 분위기에서 소결하여 기공크기 및 기공부피의 변화를 관찰한 결과, H2 분위기에서 소결하였을 때는 Li$_2$O의 첨가에 의해 치밀화가 주로 일어났고, 반면에 $N_2$-7vol.%H$_2$ 분위기에서 소결하면 Li$_2$O의 첨가에 의해 작은 기공은 소멸되고 큰 기공이 생성되었다.

  • PDF

폐리튬이온전지로부터 분리한 양극활물질의 침출 (Leaching of Cathodic Active Materials from Spent Lithium Ion Battery)

  • 이철경;김태현
    • 자원리싸이클링
    • /
    • 제9권4호
    • /
    • pp.37-43
    • /
    • 2000
  • 폐리륨이온전지의 재활용 일환으로 폐전지에서 분리한 양극활물질인 $LiCoO_2$로부터 Li과 Co룹 회수하기 위하여 침출거동올 조사하였다. 전 연구에서 얻은 최적조건에서 $LiCoO_2$를 1M 황산과 질산으료 침출하였을 때 Li과 Co의 침출율이 각각 70-80%, 40%로 Co의 침출율이 낮았다. 환원제를 첨가한 경우 Li과 Co의 침출율이 증가하였는데, 특히 $Na_2S_2O_3$$H_2O_2$ 와 같은 환원제에서 질산침출을 하는 경우 Li괴- Co의 용해가 거의 95% 이상 이루어졌다. 이는 환원제가 $Co^{3+}$$Co^{2+}$로 환원시켜 침출이 용이해졌기 때문으로 생각된다. 변수설험을 통하여 얻은 최적의 조건(광액농도 10g/l 반응온도 $75^{\circ}C$, 교반속도 400 rpm' 1.7 vol% $H_2O_2$)에서 폐리튬이온전지로부터 선별하고 열처리한 $LiCoO_2$ 분말을 침출 실험한 결과, Li과 Co의 침출율이 각각 99% 이상이었으며, 이는 충방전이 거듭되면서 양극활물질인 $LiCoO_2$이 화학적으로 활성화되었거나 Li의 탈착으로 겸정구조가 불안하기 때문으로 생각된다.

  • PDF

수양명경근(手陽明經筋)의 해부학적(解剖學的) 고찰(考察) (Anatomy of Large Intestine Meridian Muscle in human)

  • 심영;박경식;이준무
    • Korean Journal of Acupuncture
    • /
    • 제19권1호
    • /
    • pp.15-23
    • /
    • 2002
  • This study was carried to identify the component of Large Intestine Meridian Muscle in human, dividing into outer, middle, and inner part. Brachium and antebrachium were opened widely to demonstrate muscles, nerve, blood vessels and the others, displaying the inner structure of Large Intestine Meridian Muscle. We obtained the results as follows; 1. Meridian Muscle is composed of the muscle, nerve and blood vessels. 2. In human anatomy, it is present the difference between a term of nerve or blood vessels which control the muscle of Meridian Muscle and those which pass near by Meridian Muscle. 3. The inner composition of meridian muscle in human arm is as follows. 1) Muscle; extensor digitorum tendon(LI-1), lumbrical tendon(LI-2), 1st dosal interosseous muscle(LI-3), 1st dosal interosseous muscle and adductor pollicis muscle(LI-4), extensor pollicis longus tendon and extensor pollicis brevis tendon(LI-5), adductor pollicis longus muscle and extensor carpi radialis brevis tendon(LI-6), extensor digitorum muscle and extensor carpi radialis brevis mucsle and abductor pollicis longus muscle(LI-7), extensor carpi radialis brevis muscle and pronator teres muscle(LI-8), extensor carpi radialis brevis muscle and supinator muscle(LI-9), extensor carpi radialis longus muscle and extensor carpi radialis brevis muscle and supinator muscle(LI-10), brachioradialis muscle(LI-11), triceps brachii muscle and brachioradialis muscle(LI-12), brachioradialis muscle and brachialis muscle(LI-13), deltoid muscle(LI-14, LI-15), trapezius muscle and supraspinous muscle(LI-16), platysma muscle and sternocleidomastoid muscle and scalenous muscle(LI-17, LI-18), orbicularis oris superior muscle(LI-19, LI-20) 2) Nerve; superficial branch of radial nerve and branch of median nerve(LI-1, LI-2, LI-3), superficial branch of radial nerve and branch of median nerve and branch of ulna nerve(LI-4), superficial branch of radial nerve(LI-5), branch of radial nerve(LI-6), posterior antebrachial cutaneous nerve and branch of radial nerve(LI-7), posterior antebrachial cutaneous nerve(LI-8), posterior antebrachial cutaneous nerve and radial nerve(LI-9, LI-12), lateral antebrachial cutaneous nerve and deep branch of radial nerve(LI-10), radial nerve(LI-11), lateral antebrachial cutaneous nerve and branch of radial nerve(LI-13), superior lateral cutaneous nerve and axillary nerve(LI-14), 1st thoracic nerve and suprascapular nerve and axillary nerve(LI-15), dosal rami of C4 and 1st thoracic nerve and suprascapular nerve(LI-16), transverse cervical nerve and supraclavicular nerve and phrenic nerve(LI-17), transverse cervical nerve and 2nd, 3rd cervical nerve and accessory nerve(LI-18), infraorbital nerve(LI-19), facial nerve and infraorbital nerve(LI-20). 3) Blood vessels; proper palmar digital artery(LI-1, LI-2), dorsal metacarpal artery and common palmar digital artery(LI-3), dorsal metacarpal artery and common palmar digital artery and branch of deep palmar aterial arch(LI-4), radial artery(LI-5), branch of posterior interosseous artery(LI-6, LI-7), radial recurrent artery(LI-11), cephalic vein and radial collateral artery(LI-13), cephalic vein and posterior circumflex humeral artery(LI-14), thoracoacromial artery and suprascapular artery and posterior circumflex humeral artery and anterior circumflex humeral artery(LI-15), transverse cervical artery and suprascapular artery(LI-16), transverse cervical artery(LI-17), SCM branch of external carotid artery(LI-18), facial artery(LI-19, LI-20)

  • PDF

리튬 함량 및 단위 셀 압력이 열전지용 리튬 음극의 방전 성능에 미치는 영향 (Effect of Lithium Contents and Applied Pressure on Discharge Characteristics of Single Cell with Lithium Anode for Thermal Batteries)

  • 임채남;안태영;유혜련;하상현;여재성;조장현;윤현기
    • 한국전기전자재료학회논문지
    • /
    • 제32권2호
    • /
    • pp.165-173
    • /
    • 2019
  • Lithium anodes (13, 15, 17, and 20 wt% Li) were fabricated by mixing molten lithium and iron powder, which was used as a binder to hold the molten lithium, at about $500^{\circ}C$ (discharge temp.). In this study, the effect of applied pressure and lithium content on the discharge properties of a thermal battery's single cell was investigated. A single cell using a Li anode with a lithium content of less than 15 wt% presented reliable performance without any abrupt voltage drop resulting from molten lithium leakage under an applied pressure of less than $6kgf/cm^2$. Furthermore, it was confirmed that even when the solid electrolyte is thinner, the Li anode of the single cell normally discharges well without a deterioration in performance. The Li anode of the single cell presented a significantly improved open-circuit voltage of 2.06 V, compared to that of a Li-Si anode (1.93 V). The cut-off voltage and specific capacity were 1.83 V and $1,380As\;g^{-1}$ (Li anode), and 1.72 V and $1,364As\;g^{-1}$ (Li-Si anode). Additionally, the Li anode exhibited a stable and flat discharge curve until 1.83 V because of the absence of phase change phenomena of Li metal and a subsequent rapid voltage drop below 1.83 V due to the complete depletion of Li at the end state of discharge. On the other hand, the voltage of the Li-Si anode cell decreased in steps, $1.93V{\rightarrow}1.72V(Li_{13}Si_4{\rightarrow}Li_7Si_3){\rightarrow}1.65V(Li_7Si_3{\rightarrow}Li_{12}Si_7)$, according to the Li-Si phase changes during the discharge reaction. The energy density of the Li anode cell was $807.1Wh\;l^{-1}$, which was about 50% higher than that of the Li-Si cell ($522.2Wh\;l^{-1}$).

RF 스퍼터법을 이용한 Li2MnSiO4 리튬 이차전지 양극활물질 박막 제조 및 전기화학적 특성 (Fabrication of Li2MnSiO4 Cathode Thin Films by RF Sputtering for Thin Film Li-ion Secondary Batteries and Their Electrochemical Properties)

  • 채수만;심중표;선호정
    • 한국전기전자재료학회논문지
    • /
    • 제30권7호
    • /
    • pp.447-453
    • /
    • 2017
  • In this study, $Li_2MnSiO_4$ cathode material and LiPON solid electrolyte were manufactured into thin films, and the possibility of their use in thin-film batteries was researched. When the RTP treatment was performed after $Li_2MnSiO_4$ cathode thin-film deposition on the SUS substrate by a sputtering method, a ${\beta}-Li_2MnSiO_4$ cathode thin film was successfully manufactured. The LiPON solid electrolyte was prepared by a reactive sputtering method using a $Li_3PO_4$ target and $N_2$ gas, and a homogeneous and flat thin film was deposited on a $Li_2MnSiO_4$ cathode thin film. In order to evaluate the electrochemical properties of the $Li_2MnSiO_4$ cathode thin films, coin cells using only a liquid electrolyte were prepared and the charge/discharge test was conducted. As a result, the amorphous thin film of RTP treated at $600^{\circ}C$ showed the highest initial discharge capacity of about $60{\mu}Ah/cm^2$. In cases of coin cells using liquid/solid double electrolyte, the discharge capacities of the $Li_2MnSiO_4$ cathode thin films were comparable to those without solid LiPON electrolyte. It was revealed that $Li_2MnSiO_4$ cathode thin films with LiPON solid electrolyte were applicable in thin film batteries.

Co 치환량에 따른 LiNi1-xCoxO2 (x=0.0~1.0)의 결정구조 및 전기화학 특성 (Crystal Structure and Electrochemical Performance of LiNi1-xCoxO2 (x=0.0~1.0) According to Co Substitution)

  • 홍진규;오승모
    • 전기화학회지
    • /
    • 제6권1호
    • /
    • pp.1-5
    • /
    • 2003
  • [ $LiNi_{1-x}Co_xO_2\;(x=0.0,\;0.3,\;05,\;0.7,\;1.0)$ ]을 구연산법을 이용하여 합성하고, Co 치환량에 따른 결정구조와 리튬 이차전지 양극특성을 조사하였다 X-선 회절분석 결과로부터 Co치환량에 무관하게 모든 조성에서 단일상의 고용체를 형성함을 알 수 있었다. 또한 Rietveld 구조정산을 통하여 고용체의 결정구조가 Co 치환량에 따라 크게 변화함을 확인하였다. 즉, Co치환량이 적은 경우는 (x=0-0.5)는 격자상수의 비가 작은(c/a<4.98) 입방구조에 가까웠으며, Co치환량이 큰 경우(x^gt;0.7)는 격자상수의 비가 큰$(c/a\geq4.98)$ 층상구조를 보였다. 이와 같은 차이는 electrochemical voltage spectroscopy를 통하여 확인할 수 있었는데, 고용체를 형성하고 있는 Co성분은 Co치환량이 적을 경우는 $3.7V\;(vs.\;Li/Li^+)$, 그리고 치환량이 클 경우는 $3.92V\;(vs.\;Li/Li^+)$에서 충전되는 현상을 보였다.

CsI:X(X=Li+,K+,Rb+단결정의 섬광특성 (Scintillation Characteristics of CsI:X(X=Li+,K+,Rb+ Single Crystals)

  • 강갑중;도시홍;이우교;오문영
    • 센서학회지
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2003
  • CsI에 활성제로 Li, K, Rb를 첨가하여 CsI(Li), CsI(K) 및 CsI(Rb) 단결정을 Czochralski방법으로 육성하였다. $^{137}CS$(0.662 MeV)에 대한 CsI(Li:0.2 mole%) 섬광체의 에너지 분해능은 14.5%이었고 CsI(K:0.5 mole%) 섬광체는 15.9%이었으며 CsI(Rb:1.5 mole%) 섬광체는 17.0%이였다. 이들 CsI(Li), CsI(K) 및 CsI(Rb) 섬광체의 $\gamma$선 에너지에 대한 에너지 교정곡선은 선형적 이였다. 일정비율 시간분석법(CFT :constant-fraction timing method)으로 측정한 CsI(Li:0.2 mole%), CsI(K:0.5 mole%) 및 CsI(Rb:1.5 mole%) 성광체의 시간 분해능은 각각 9.0 ns, 14.7 ns 및 9.7 ns이였다. CsI(Li:0.2 mole%), CsI(K:0.5 mole%) 및 CsI(Rb:1.5 mole%) 섬광체의 형광감쇠시간은 각각 ${\tau}_1=41.2\;ns$, ${\tau}_2=483\;ns$, ${\tau}_1=47.2\;ns$, ${\tau}_2=417\;ns$${\tau}_1=41.3\;ns$${\tau}_2=553\;ns$이였다. 그리고 CsI(Li:0.2 mole%), CsI(K:0.5 mole%) 및 CsI(Rb:1.5 mole%) 단결정의 인광감쇠시간은 각각 0.51 s, 0.57 s 및 0.56 s이였다.

지상 LiDAR를 이용한 토석류 발생에 의한 침식, 퇴적량 측정 (Analysis of Erosion and Deposition by Debris-flow with LiDAR)

  • 전병희;장창덕;김남균
    • 한국지리정보학회지
    • /
    • 제13권2호
    • /
    • pp.54-63
    • /
    • 2010
  • 2009년 7월 9일부터 14일까지 누적강우 455mm의 집중호우에 의해 제천시 일대에 다수의 토석류 사태가 발생하였다. 토석류 발생에 따른 지형변화를 분석하기 위하여 수치지도와 라이다(LiDAR) 자료를 이용하여 고해상도의 수치고도모델(DEM)을 생성하였다. 라이다측량을 위해서 고해상도의 디지털 카메라와 GPS가 탑재된 3차원 스캐너 시스템 (RIEGLE LMS-Z390i)을 이용하였다. 라이다 스캐닝에 의해 생성된 포인트 자료는 클리핑과 필터링 작업을 거친 후 수치지도에 중첩시켜 토석류 발생 후의 지형의 DEM을 생성한다. 이렇게 토석류 발생 전후의 DEM 비교결과, 토석류 발생에 의한 침식과 퇴적량은 각각 $17,586m^3$, $7,520m^3$으로 평가되었다. 이러한 고해상도 지상라이다시스템을 이용하여 지형변화 관측을 통해 장래 토석류 모델 연구에 기여할 수 있을 것으로 판단되었다.

Li/V6O13 리튬 폴리머 전지의 성능 (The Performance of Li/V6O13 Lithium Polymer Battery)

  • 김형선;조병원;윤경석;전해수
    • 공업화학
    • /
    • 제7권2호
    • /
    • pp.362-370
    • /
    • 1996
  • $Li/V_6O_{13}$ 전지의 성능과 poly(acrylonitrile)[PAN]계 폴리머 전해질의 전기화학적인 성질을 조사 하였다. 폴리머 전해질의 이온 전도도는 상온에서 $2.3{\times}10^{-3}S/cm$를 보였으며 리튬 전극과의 상용성도 우수하였다. 또한 4.3V(vs. $Li^+/Li$)까지의 전기화학적인 안정성이 있는 것으로 나타났다. $Li/V_6O_{13}$ 전지 반응은 $V_6O_{13}$ 전극과 폴리머 전해질간의 계면 저항이 지배적 이었다. $V_6O_{13}$내의 리튬 이온의 확산 계수값은 $2.7{\times}10^{-9}{\sim}4.2{\times}10^{-8}cm^2/sec$로 나타났다. $V_6O_{13}$ 활물질의 이용률은 C/8($50{\mu}A/cm^2$)에서 95%였으며 C/4($100{\mu}A/cm^2$)에서는 82%로 각각 나타났다.

  • PDF