DOI QR코드

DOI QR Code

Crystal Structure and Electrochemical Performance of LiNi1-xCoxO2 (x=0.0~1.0) According to Co Substitution

Co 치환량에 따른 LiNi1-xCoxO2 (x=0.0~1.0)의 결정구조 및 전기화학 특성

  • Hong, Jin K. (School of Chemical Engineering and Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Oh, Seung M. (School of Chemical Engineering and Research Center for Energy Conversion & Storage, Seoul National University)
  • 홍진규 (서울대학교 공과대학 응용화학부, 에너지변환 저장연구센터) ;
  • 오승모 (서울대학교 공과대학 응용화학부, 에너지변환 저장연구센터)
  • Published : 2003.02.01

Abstract

[ $LiNi_{1-x}Co_xO_2\;(x=0.0\~1.0)$ ] powders were synthesized by citrate method, and their crystal structures and electrochemical performance as the cathode material in Li secondary batteries were analyzed. X-ray diffraction analysis revealed that all the samples carry a single phase regardless of the Co substitution. The results of Rietveld refinement suggested that the crystal structure of solid solutions varies according to the Co substitution. When the Co substitution is low $(x=0.3\~0.5)$, the solid solutions carry a cubic-like structure with a relatively small value in the ratio of lattice parameters (c/a). The solid solutions made with a higher Co substitution (x=0.7), however, exhibit a layered structure with a higher c/a ratio. This difference was also observed in the electrochemical voltage spectroscopy (EVS) profiles, whereby the Co component in scarcely substituted materials shows a charging reaction at $3.7V\;(vs.\;Li/Li^+)$, but in the heavily substituted ones at 3.92V.

[ $LiNi_{1-x}Co_xO_2\;(x=0.0,\;0.3,\;05,\;0.7,\;1.0)$ ]을 구연산법을 이용하여 합성하고, Co 치환량에 따른 결정구조와 리튬 이차전지 양극특성을 조사하였다 X-선 회절분석 결과로부터 Co치환량에 무관하게 모든 조성에서 단일상의 고용체를 형성함을 알 수 있었다. 또한 Rietveld 구조정산을 통하여 고용체의 결정구조가 Co 치환량에 따라 크게 변화함을 확인하였다. 즉, Co치환량이 적은 경우는 (x=0-0.5)는 격자상수의 비가 작은(c/a<4.98) 입방구조에 가까웠으며, Co치환량이 큰 경우(x^gt;0.7)는 격자상수의 비가 큰$(c/a\geq4.98)$ 층상구조를 보였다. 이와 같은 차이는 electrochemical voltage spectroscopy를 통하여 확인할 수 있었는데, 고용체를 형성하고 있는 Co성분은 Co치환량이 적을 경우는 $3.7V\;(vs.\;Li/Li^+)$, 그리고 치환량이 클 경우는 $3.92V\;(vs.\;Li/Li^+)$에서 충전되는 현상을 보였다.

Keywords

References

  1. MRS Bull v.27 R. J. Gummow;M. M. Thackeray;W. Y. F. David;S. Hull
  2. J. Power Sources v.72 Z. S.Peng;C. R. Wan;C. Y. Yang https://doi.org/10.1016/S0378-7753(97)02689-X
  3. Solid state Ionics v.67 W. Li;J. N. Reimers;J. R. Dahn https://doi.org/10.1016/0167-2738(93)90317-V
  4. J. Electrochem. Soc. v.140 T. Ohzuku;A. Ueda;M. Nagayama https://doi.org/10.1149/1.2220730
  5. J. Electrochem. Soc. v.127 K. Yamaura;M. Takano https://doi.org/10.1006/jssc.1996.0363
  6. Solid State Inonics v.53-56 R. J. Gummow;M. M. Thackeray https://doi.org/10.1016/0167-2738(92)90447-W
  7. Solid State Ionics v.62 E. Rossen;J, N. Reners;J. R. Dahn https://doi.org/10.1016/0167-2738(93)90251-W
  8. MRS Bull v.28 R. J. Gummow;D. C. Liles;M. M. Thackeray;W. I. F. David https://doi.org/10.1016/0025-5408(93)90098-X
  9. J. Electrochem. Soc. v.139 J. N. Reiners;J. R. Dahn https://doi.org/10.1149/1.2221184
  10. J. Electrochem. Soc. v.140 R. J. Gummow;M. M. Thackeray https://doi.org/10.1149/1.2221096
  11. Electrochim. Acta v.38 T. Ohzuku;A. Ueda;M. Nagayama;Y. Iwakoshi;H. Komori https://doi.org/10.1016/0013-4686(93)80046-3
  12. J. Electrochem. Soc. v.141 A. Ueda;T. Ozuku https://doi.org/10.1149/1.2055051
  13. J. Mater.Chem v.6 Y. Saadoune;C. Delmas https://doi.org/10.1039/jm9960600193
  14. J. Electrochem. Soc. v.145 R. Alcantara;P. Lavela;J. L. Tirado https://doi.org/10.1149/1.1838338
  15. Electrocuem. Comm v.2 X. Q. Yang;X. Sung;J. McBreen https://doi.org/10.1016/S1388-2481(00)00111-9
  16. J. Power Sources v.52 L. G. Demourgues;C. Denage;C. Delman https://doi.org/10.1016/0378-7753(94)02023-X
  17. J. Power Sources v.74 M. Yoshio, Y. Todorov;K. Yamato;H. Noguhi;J. Itoh;M. Okada;T. Mouri https://doi.org/10.1016/S0378-7753(98)00011-1
  18. The Rietveld Method R. A. Yang
  19. J. Electrochem. Soc. v.143 A. Rougier;P. Gravereau;C. Delmas https://doi.org/10.1149/1.1836614
  20. Solid State Ionics v.90 A. Rougier;I. Saadoune;P. Gravereau;P. Willmann;C. Delmas https://doi.org/10.1016/S0167-2738(96)00370-0
  21. J. Phys. C.:Soild State Phys. v.18 A. Cox;M. J. L Sandster https://doi.org/10.1088/0022-3719/18/36/002

Cited by

  1. Cobalt suppressed Jahn–Teller effect in for lithium ion batteries vol.151, pp.3, 2011, https://doi.org/10.1016/j.ssc.2010.11.024
  2. On the Crystal Chemistry of Alkali Metal Oxocobaltates vol.638, pp.12-13, 2012, https://doi.org/10.1002/zaac.201200076