바르지 못한 앉은 자세는 다양한 질병과 신체 변형을 유발한다. 하지만 오랜 시간동안 바른 앉은 자세를 유지하는 것은 쉬운 일이 아니다. 이러한 이유 때문에 그동안 자동으로 바른 앉은 자세를 유도하기 위한 다양한 시스템이 제안되어왔다. 이전에 제안되었던 앉은 자세 판별 및 바른 앉은 자세 유도 시스템은 영상 처리를 이용한 방법, 의자에 압력센서를 달아 측정하는 방법, IMU(Internal Measurement Unit)를 이용한 방법이 있었다. 이 중 IMU를 이용한 측정 방법은 하드웨어 구성이 간단하고, 공간, 광량 등의 환경적 제한이 적어 측정에 있어서 용이한 이점이 있었다. 본 논문에서는 하나의 IMU를 이용하여 적은 데이터로 효율적으로 앉은 자세를 분류하는 방법을 연구하였다. 특징추출 기법을 이용하여 데이터 분류에 기여도가 낮은 데이터를 제거하였으며, 머신러닝 기법을 이용하여 앉은 자세 분류에 적합한 센서 위치를 찾고, 여러 개의 머신러닝 모델 중 가장 분류 정확도가 높은 머신러닝 모델을 선정하였다. 특징추출 기법은 PCA(Principal Component Analysis)를 사용하였고, 머신러닝 모델은 SVM(Support Vector Machine), KNN(K Nearest Neighbor), K-means (K-means Algorithm) GMM (Gaussian Mixture Model), and HMM (Hidden Marcov Model)모델을 사용하였다. 연구결과 데이터 분류율이 높게나온 뒷목이 적합한 센서 위치가 되었으며, 센서 데이터 중 Yaw데이터는 분류 기여도가 가장 낮은 데이터임을 PCA 특징추출 기법을 이용하여 확인하고, 제거하여도 분류율에 영향이 매우 작음을 확인하였다. 적합 머신러닝 모델은 SVM, KNN 모델로 다른 모델에 비하여 분류율이 높게 나오는 것을 확인할 수 있었다.