In this paper, we study the generalized Kirchhoff type equation in the presence of past and finite history $$\large u_{tt}-M(x,t,{\tau},\;{\parallel}{\nabla}u(t){\parallel}^2){\Delta}u+{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^t}\;h(t-{\tau})div[a(x){\nabla}u({\tau})]d{\tau}\\\hspace{25}-{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{-{\infty}}}^t}\;k(t-{\tau}){\Delta}u(x,t)d{\tau}+{\mid}u{\mid}^{\gamma}u+{\mu}_1u_t(x,t)+{\mu}_2u_t(x,t-s(t))=0.$$ Under the smallness condition with respect to Kirchhoff coefficient and the relaxation function and other assumptions, we prove the expoential decay rate of the Kirchhoff type energy.