• Title/Summary/Keyword: zero ring

Search Result 232, Processing Time 0.026 seconds

GENERALIZED FORMS OF SWIATAK'S FUNCTIONAL EQUATIONS WITH INVOLUTION

  • Wang, Zhihua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.779-787
    • /
    • 2019
  • In this paper, we study two functional equations with two unknown functions from an Abelian group into a commutative ring without zero divisors. The two equations are generalizations of Swiatak's functional equations with an involution. We determine the general solutions of the two functional equations and the properties of the general solutions of the two functional equations under three different hypotheses, respectively. For one of the functional equations, we establish the Hyers-Ulam stability in the case that the unknown functions are complex valued.

HOMOLOGY AND SERRE CLASS IN D(R)

  • Zhicheng, Wang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • Let 𝓢 be a Serre class in the category of modules and 𝖆 an ideal of a commutative Noetherian ring R. We study the containment of Tor modules, Koszul homology and local homology in 𝓢 from below. With these results at our disposal, by specializing the Serre class to be Noetherian or zero, a handful of conclusions on Noetherianness and vanishing of the foregoing homology theories are obtained. We also determine when TorR𝓼+t(R/𝖆, X) ≅ TorR𝓼(R/𝖆, H𝖆t(X)).

COHEN-MACAULAY DIMENSION FOR COMPLEXES

  • Fatemeh Mohammadi Aghjeh Mashhad
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.303-311
    • /
    • 2024
  • In this paper, our focus lies in exploring the concept of Cohen-Macaulay dimension within the category of homologically finite complexes. We prove that over a local ring (R, 𝔪), any homologically finite complex X with a finite Cohen-Macaulay dimension possesses a finite CM-resolution. This means that there exists a bounded complex G of finitely generated R-modules, such that G is isomorphic to X and each nonzero Gi within the complex G has zero Cohen-Macaulay dimension.

SOME FACTORIZATION PROPERTIES OF IDEALIZATION IN COMMUTATIVE RINGS WITH ZERO DIVISORS

  • Sina Eftekhari;Sayyed Heidar Jafari;Mahdi Reza Khorsandi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.291-299
    • /
    • 2024
  • We study some factorization properties of the idealization R(+)M of a module M in a commutative ring R which is not necessarily a domain. We show that R(+)M is ACCP if and only if R is ACCP and M satisfies ACC on its cyclic submodules. We give an example to show that the BF property is not necessarily preserved in idealization, and give some conditions under which R(+)M is a BFR. We also characterize the idealization rings which are UFRs.

IDEALS AND SUBMODULES OF MULTIPLICATION MODULES

  • LEE, SANG CHEOL;KIM, SUNAH;CHUNG, SANG-CHO
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.5
    • /
    • pp.933-948
    • /
    • 2005
  • Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for every submodule N of M there exists an ideal I of R such that N = 1M. Let M be a non-zero multiplication R-module. Then we prove the following: (1) there exists a bijection: N(M)$\bigcap$V(ann$\_{R}$(M))$\rightarrow$Spec$\_{R}$(M) and in particular, there exists a bijection: N(M)$\bigcap$Max(R)$\rightarrow$Max$\_{R}$(M), (2) N(M) $\bigcap$ V(ann$\_{R}$(M)) = Supp(M) $\bigcap$ V(ann$\_{R}$(M)), and (3) for every ideal I of R, The ideal $\theta$(M) = $\sum$$\_{m(Rm :R M) of R has proved useful in studying multiplication modules. We generalize this ideal to prove the following result: Let R be a commutative ring with identity, P $\in$ Spec(R), and M a non-zero R-module satisfying (1) M is a finitely generated multiplication module, (2) PM is a multiplication module, and (3) P$^{n}$M$\neq$P$^{n+1}$ for every positive integer n, then $\bigcap$$^{$\_{n=1}$(P$^{n}$ + ann$\_{R}$(M)) $\in$ V(ann$\_{R}$(M)) = Supp(M) $\subseteq$ N(M).

EXACTNESS OF IDEAL TRANSFORMS AND ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES

  • BAHMANPOUR, KAMAL
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1253-1270
    • /
    • 2015
  • Let (R, m) be a commutative Noetherian local domain, M a non-zero finitely generated R-module of dimension n > 0 and I be an ideal of R. In this paper it is shown that if $x_1,{\ldots },x_t$ ($1{\leq}t{\leq}n$) be a sub-set of a system of parameters for M, then the R-module $H^t_{(x_1,{\ldots },x_t)}$(R) is faithful, i.e., Ann $H^t_{(x_1,{\ldots },x_t)}$(R) = 0. Also, it is shown that, if $H^i_I$ (R) = 0 for all i > dim R - dim R/I, then the R-module $H^{dimR-dimR/I}_I(R)$ is faithful. These results provide some partially affirmative answers to the Lynch's conjecture in [10]. Moreover, for an ideal I of an arbitrary Noetherian ring R, we calculate the annihilator of the top local cohomology module $H^1_I(M)$, when $H^i_I(M)=0$ for all integers i > 1. Also, for such ideals we show that the finitely generated R-algebra $D_I(R)$ is a flat R-algebra.

On Comaximal Graphs of Near-rings

ON GRAPHS ASSOCIATED WITH MODULES OVER COMMUTATIVE RINGS

  • Pirzada, Shariefuddin;Raja, Rameez
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1167-1182
    • /
    • 2016
  • Let M be an R-module, where R is a commutative ring with identity 1 and let G(V,E) be a graph. In this paper, we study the graphs associated with modules over commutative rings. We associate three simple graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ to M called full annihilating, semi-annihilating and star-annihilating graph. When M is finite over R, we investigate metric dimensions in $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$. We show that M over R is finite if and only if the metric dimension of the graph $ann_f({\Gamma}(M_R))$ is finite. We further show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if M is a prime-multiplication-like R-module. We investigate the case when M is a free R-module, where R is an integral domain and show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if $$M{\sim_=}R$$. Finally, we characterize all the non-simple weakly virtually divisible modules M for which Ann(M) is a prime ideal and Soc(M) = 0.

Switching and sensing molecular spins by chemical reactions on metal surfaces

  • Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.63.2-63.2
    • /
    • 2015
  • Controlling and sensing spin states of magnetic molecules such as metallo-porphyrins at the single molecule level is essential for spintronic molecular device applications. Axial coordinations of diatomic molecules to metallo-porphyrins also play key roles in dynamic processes of biological functions such as blood pressure control and immune response. However, probing such reactions at the single molecule level to understand their physical mechanisms has been rarely performed. Here we present on our single molecule association and dissociation experiments between diatomic and metallo-porphyrin molecules on Au(111) describing its adsorption structures, spin states, and dissociation mechanisms. We observed bright ring shapes in NO adsorbed metallo-porphyrin compelxes and explained them by considering tilted binding and precession motion of NO. Before NO exposure, Co-porphryin showed a clear zero-bias peak in scanning tunneling spectroscopy, a signature of Kondo effect in STS, whereas after NO exposures it formed a molecular complex, NO-Co-porphyrin, that did not show any zero-bias feature implying that the Kondo effect was switched off by binding of NO. Under tunneling junctions of scanning tunneling microscope, both positive and negative energy pulses. From the observed power law relations between dissociation rate and tunneling current, we argue that the dissociations were inelastically induced with molecular orbital resonances. Our study shows that single molecule association and dissociation can be used to probe spin states and reaction mechanisms in a variety of axial coordination between small molecules and metallo-porphyrins.

  • PDF