IDEALS AND SUBMODULES OF MULTIPLICATION MODULES

SANG CHEOL LEE*, SUNAH KIM, AND SANG-CHO CHUNG

ABSTRACT. Let R be a commutative ring with identity and let M be an R-module. Then M is called a *multiplication module* if for every submodule N of M there exists an ideal I of R such that N = IM. Let M be a non-zero multiplication R-module. Then we prove the following:

(1) there exists a bijection: $N(M) \cap V(\operatorname{ann}_R(M)) \longrightarrow \operatorname{Spec}_R(M)$ and in particular, there exists a bijection:

$$N(M) \cap \operatorname{Max}(R) \longrightarrow \operatorname{Max}_R(M)$$
,

- (2) $N(M) \cap V(\operatorname{ann}_R(M)) = \operatorname{Supp}(M) \cap V(\operatorname{ann}_R(M))$, and
- (3) for every ideal I of R,

$$(((\sqrt{I + \operatorname{ann}_R(M)})M) :_R M) = \bigcap_{P \in N(M) \cap V(\operatorname{ann}_R(M))} P.$$

The ideal $\theta(M) = \sum_{m \in M} (Rm :_R M)$ of R has proved useful in studying multiplication modules. We generalize this ideal to prove the following result: Let R be a commutative ring with identity, $P \in \operatorname{Spec}(R)$, and M a non-zero R-module satisfying

- (1) M is a finitely generated multiplication module,
- (2) PM is a multiplication module, and
- (3) $P^nM \neq P^{n+1}M$ for every positive integer n,

then $\bigcap_{n=1}^{\infty} (P^n + \operatorname{ann}_R(M)) \in V(\operatorname{ann}_R(M)) = \operatorname{Supp}(M) \subseteq N(M)$.

1. Introduction

Throughout this paper, we consider only commutative rings with identity and modules which are unitary. Let R be a commutative ring

Received March 17, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 13E15, 13A15, 16D10.

Key words and phrases: prime submodules, maximal submodules, finitely generated modules, multiplication modules.

^{*}The first author was supported by research funds of Chonbuk National University.

and M an R-module. Then $\operatorname{Spec}(R)$ denotes the set of all prime ideals of R and $\operatorname{Spec}_R(M)$ denotes the set of all prime submodules of M. Obviously, $\operatorname{Spec}_R(R) = \operatorname{Spec}(R)$. If N is a submodule of M, then $(N:_R M)$ is defined by $\{r \in R \mid rM \subseteq N\}$. In particular, $(0:_R M)$ is called the annihilator of M and is denoted by $\operatorname{ann}_R(M)$. There are three subsets of $\operatorname{Spec}(R)$ which depend on M:

- (1) $N(M) = \{ P \in \text{Spec}(R) \mid PM \neq M \},$
- (2) $V(\operatorname{ann}_R(M)) = \{ P \in \operatorname{Spec}(R) \mid \operatorname{ann}_R(M) \subseteq P \},$
- (3) Supp $(M) = \{ P \in \text{Spec}(R) \mid M_P \neq 0 \}.$

 $\operatorname{Max}(R)$ denotes the set of all maximal ideals of R and $\operatorname{Max}_R(M)$ denotes the set of all maximal submodules of M. Clearly, $\operatorname{Max}_R(R) = \operatorname{Max}(R)$. By a *quasi-local ring*, we mean a commutative ring with a unique maximal ideal.

Let R be a commutative ring and let M be an R-module. Then a submodule N of M is said to be extended if N = IM for some ideal I of R. M is called a multiplication module if every submodule of M is extended. For example, every proper submodule of the \mathbb{Z} -module $\mathbb{Z}(p^{\infty})$ is a multiplication module but the \mathbb{Z} -module $\mathbb{Z}(p^{\infty})$ itself is not. We generalize [8, Theorem 6] as follows. If M is a non-zero multiplication module then there exists a bijection : $N(M) \cap V(\operatorname{ann}_R(M)) \to \operatorname{Spec}_R(M)$ and in particular, there exists a bijection : $N(M) \cap \operatorname{Max}(R) \to \operatorname{Max}_R(M)$.

In commutative ring theory, it is well-known that, for every non-zero finitely generated module over a commutative ring R,

$$\emptyset \neq V(\operatorname{ann}_R(M)) = \operatorname{Supp}(M).$$

In Section 2, we prove that if M is a non-zero multiplication module over a commutative ring R, then $N(M) \cap V(\operatorname{ann}_R(M)) = \operatorname{Supp}(M) \cap V(\operatorname{ann}_R(M))$.

In Section 3, we are concerned with relationships between the ideals of a commutative ring and the submodules of a multiplication module over the ring. A well-known result of commutative algebra saying that the radical of an ideal I of a commutative ring is the intersection of all prime ideals containing I is generalized to non-zero multiplication modules. Let R be a commutative ring and M an R-moodule. For an ideal I of R, we define the ideal $\theta(IM) = \sum_{x \in IM} (Rx :_R M)$ of R. This is a generalization of the ideal $\theta(M)$ of R which was introduced in [1] and recently, the ideal $\theta(M)$ was studied in [3]. Let R be a commutative ring with identity and let $P \in \operatorname{Spec}(R)$. If M is a non-zero R-module satisfying

(1) M is a finitely generated multiplication module,

- (2) PM is a multiplication module, and
- (3) $P^nM \neq P^{n+1}M$ for every positive integer n,

then we prove by making use of the notion of the ideal $\theta(M)$ of R that

$$\bigcap_{n=1}^{\infty} (P^n + \operatorname{ann}_R(M)) \in V(\operatorname{ann}_R(M)) = \operatorname{Supp}(M) \subseteq N(M).$$

Let R be a quasi-local ring with unique maximal ideal P. Let M be a non-zero R-module satisfying

- (1) M is a finitely generated multiplication module,
- (2) PM is a multiplication module, and
- (3) $P^nM \neq P^{n+1}M$ for every positive integer n.

Then we prove that $R/\operatorname{ann}_R(M)$ is a discrete valuation domain. Finally, in particular, it is found under what conditions a Noetherian local ring is a discrete valuation domain.

Our first lemma gives three well-known results that will be used throughout this paper.

LEMMA 1.1. Let R be a commutative ring and M an R-module.

- (1) If M is a multiplication R-module, then it is locally cyclic.
- (2) If M is a multiplication R-module, then

$$igcap_{I\in\mathcal{I}}\left(IM
ight)=igg(igcap_{I\in\mathcal{I}}\left(I+ann_{R}\left(M
ight)
ight)igg)M$$

for any non-empty collection \mathcal{I} of ideals of R.

- (3) Let M be a non-zero multiplication R-module. Then
 - (i) for every proper submodule N of M, there exists $K \in Max_R(M)$ of M such that $N \subseteq K$, and
 - (ii) $K \in Max_R(M)$ if and only if there exists $P \in Max(R)$ such that $K = PM \neq M$.

Proof. (1) Let M be a multiplication R-module. Let P be any element of $\operatorname{Spec}(R)$. Then M_P is a multiplication R_P -module by [2, Corollary 3.5]. Since over a quasi-local ring every multiplication module is cyclic, M_P is cyclic. (2) follows from [5, Corollary 1.7]. (3) follows from [5, Theorem 2.5].

2. Prime spectra of multiplication modules

If M is a module over a commutative ring R, then for every submodule N of M, $(N:_R M) = \operatorname{ann}_R(M/N)$. The following lemma was motivated by definitions in [5, p.765] and [6, p.791].

LEMMA 2.1. Let M be a non-zero R-module and let N be a submodule of M with $N \neq M$. Then the following statements are equivalent:

- (1) $(N :_R K) = (N :_R M)$ for every submodule K of M such that $K \supseteq N$.
- (2) If $ax \in N$, where $a \in R$ and $x \in M$, then $a \in (N :_R M)$ or $x \in N$.

Proof. Assume (1). Assume $ax \in N$, where $a \in R$ and $x \in M$. Assume $x \notin N$. Then $N \subsetneq N + Rx \subseteq M$. By (1), $(N :_R (N + Rx)) = (N :_R M)$. Since $ax \in N$, we have $a(N + Rx) = aN + Rax \subseteq N$. This shows that $a \in (N :_R (N + Rx))$. Hence, $a \in (N :_R M)$.

Conversely, assume (2). Let K be any submodule of M such that $K \supseteq N$. Then $K/N \subseteq M/N$ and so,

$$(N:_R K) = \operatorname{ann}_R(K/N) \supseteq \operatorname{ann}_R(M/N) = (N:_R M)$$

Let a be any element of $(N :_R K)$. Since $N \subsetneq K$, we can find an element x of $K \setminus N$. Then $ax \in N$. Hence, by (2), $a \in (N :_R M)$.

Let R be a commutative ring and let M be a non-zero R-module. Let N be a submodule of M. Then N is called a *prime submodule* of M if

- (1) $N \neq M$ and
- (2) N satisfies either (hence both) of the statements in Lemma 2.1.

Let R be a commutative ring and M an R-module. Then a submodule N of M is called an *extended submodule* if there exists an ideal I of R such that N = IM. M is called a *multiplication module* if every submodule of M is extended.

EXAMPLE 2.2. Consider the ring \mathbb{Z} of integers. Let p be a fixed prime number. If we adapt the proof of the well-known fact that $\mathbb{Z}(p^{\infty})$ is divisible, then we can get the following:

- (1) the only proper, extended submodule of the \mathbb{Z} -module $\mathbb{Z}(p^{\infty})$ is 0, and
- (2) every proper submodule of the \mathbb{Z} -module $\mathbb{Z}(p^{\infty})$ is a multiplication module but the \mathbb{Z} -module $\mathbb{Z}(p^{\infty})$ itself is not.

Every finite-dimensional vector space with dimension greater than 1 cannot be a multiplication module. \Box

Compare the next result with [5, Corollary 1.7].

PROPOSITION 2.3. Let R be a commutative ring and M an R-module. Then M is a multiplication module if and only if $\bigcap_{A \in \mathcal{A}} A = (\bigcap_{A \in \mathcal{A}} (A :_R M))M$ for any non-empty collection \mathcal{A} of submodules of M.

Proof. Assume that M is a multiplication module. Let \mathcal{A} be any non-empty collection of submodules of M. Then

$$\bigcap_{A \in \mathcal{A}} A = ((\bigcap_{A \in \mathcal{A}} A) :_R M)M = (\bigcap_{A \in \mathcal{A}} (A :_R M))M$$

with the first equality following since M is a multiplication module and the second since residuation distributes over intersection.

Conversely, assume that $\bigcap_{A\in\mathcal{A}} A = (\bigcap_{A\in\mathcal{A}} (A:_R M))M$ for any nonempty collection \mathcal{A} of submodules of M. Let N be any submodule of M. Then $\{N\}$ is a non-empty collection of a submodule of M. By our assumption, $N = (N:_R M)M$. Hence, M is a multiplication module. \square

Let R be a ring. If M is a non-zero R-module, then $\operatorname{ann}_R(M) \neq R$. By Zorn's Lemma, $V(\operatorname{ann}_R(M)) \neq \emptyset$.

LEMMA 2.4. Let R be a commutative ring. Let M be a non-zero multiplication module. Then

$$(1) \ (PM:_RM) = \left\{ \begin{array}{ccc} P + \operatorname{ann}_R(M) & \text{if} & P \in N(M) \\ R & \text{if} & P \notin N(M) \end{array} \right.$$

(2) PM is an element of $Spec_R(M)$ if $P \in N(M)$.

Proof. (1) Clearly, $P + \operatorname{ann}_R(M) \subseteq (PM :_R M)$. Conversely, let a be any element of $(PM :_R M)$. Then $aM \subseteq PM$. Assume that $P \in N(M)$. Then we can take an element $x \in M \setminus PM$. Hence, $ax \in PM$.

M can be given $R/\operatorname{ann}_R(M)$ -module structure as follows: for any $r \in R$ and $m \in M$, define $(r + \operatorname{ann}_R(M))m = rm$. Then the module structure is well-defined. M becomes an $R/\operatorname{ann}_R(M)$ -module. Moreover, as an $R/\operatorname{ann}_R(M)$ -module, M is a multiplication module. Since $ax \in PM$, we have $(a + \operatorname{ann}_R(M))x \in (P/\operatorname{ann}_R(M))M$. Further, since $x \notin PM$, we have $x \notin (P/\operatorname{ann}_R(M))M$. By [5, Lemma 2.10], we have $a + \operatorname{ann}_R(M) \in P/\operatorname{ann}_R(M)$. This implies $a \in P + \operatorname{ann}_R(M)$. Thus, $(PM :_R M) \subseteq P + \operatorname{ann}_R(M)$. Therefore, $(PM :_R M) = P + \operatorname{ann}_R(M)$.

Assume now that PM = M. Then $(PM :_R M) = (M :_R M) = R$.

(2) Let $ax \in PM$, where $a \in R$ and $x \in M$. Then as in the proof of (1), we can show that either $a \in P + \operatorname{ann}_R(M)$ or $x \in PM$. If $a \in P + \operatorname{ann}_R(M)$, then $a \in (PM :_R M)$. Thus, either $a \in (PM :_R M)$ or $x \in PM$. Hence, PM is a prime submodule of M if $PM \neq M$. \square

The following result generalizes [8, Theorem 6. $(c) \Rightarrow (d)$] and [7, p.216, Property 1].

THEOREM 2.5. Let R be a commutative ring. Let M be a non-zero multiplication module. Then there is a one-to-one order-preserving correspondence: $N(M) \cap V(\operatorname{ann}_R(M)) \to \operatorname{Spec}_R(M)$

Proof. Let $\mathcal{X}=N(M)\cap V(\operatorname{ann}_R(M))$ and let $\mathcal{Y}=\operatorname{Spec}_R(M)$. Define a map $\varphi:\mathcal{X}\to\mathcal{Y}$ by $\varphi(P)=PM$, where $P\in\mathcal{X}$. Then by Lemma 2.4(2), φ is well-defined. Now, define a map $\psi:\mathcal{Y}\to\mathcal{X}$ by $\psi(N)=(N:_RM)$, where $N\in\mathcal{Y}$. Let N be any prime submodule of M. Then $\operatorname{ann}_R(M/N)$ is a prime ideal of R and $\operatorname{ann}_R(M)\subseteq \operatorname{ann}_R(M/N)$ by definitions and hence $(N:_RM)$ is a prime ideal of R containing $\operatorname{ann}_R(M)$. Further, since M is a multiplication module, we have $(N:_RM)M=N\neq M$. Hence, ψ is well-defined.

Let P be any element of \mathcal{X} . Then by Lemma 2.4(1),

$$(\psi \circ \varphi)(P) = \psi(\varphi(P)) = \psi(PM) = (PM :_R M) = P.$$

Hence, $\psi \circ \varphi = 1_{\mathcal{X}}$. Thus, φ is one-to-one.

Let N be any element of \mathcal{Y} . Then since M is a multiplication module,

$$(\varphi \circ \psi)(N) = \varphi(\psi(N)) = \varphi(N :_R M) = (N :_R M)M = N$$

Hence, $\varphi \circ \psi = 1_{\mathcal{Y}}$. Thus, φ is onto. Therefore, φ is a one-to-one correspondence between \mathcal{X} and \mathcal{Y} . Moreover, it is clear that φ is order-preserving.

If M is a non-zero multiplication module over a commutative ring R, then it follows from Theorem 2.5 that every prime submodule of M is of the form PM, where $P \in N(M) \cap V(\operatorname{ann}_R(M))$.

LEMMA 2.6. Let R be a commutative ring and M a non-zero module. Then $N(M) \cap Max(R) \subseteq V(ann_R(M))$.

Proof. Assume that P is a maximal ideal of R such that $PM \neq M$. Suppose $\operatorname{ann}_R(M) \nsubseteq P$. Then $P + \operatorname{ann}_R(M) = R$. Hence,

$$M = RM = (P + \operatorname{ann}_R(M))M \subseteq PM + (\operatorname{ann}_R(M))M = PM,$$

and so $M = PM$. This contradiction shows that $\operatorname{ann}_R(M) \subseteq P$.

Let R be a commutative ring and let M be a non-zero multiplication module. Then by Lemma 1.1 or [8, Theorem 2 (4)], $\operatorname{Max}_R(M) \neq \emptyset$. Compare the following result with [8, Theorem 2 (1)].

COROLLARY 2.7. Let R be a commutative ring and M a non-zero multiplication module. Then there is a one-to-one order-preserving correspondence : $N(M) \cap Max(R) \rightarrow Max_R(M)$.

Proof. Let $\mathcal{X} = N(M) \cap V(\operatorname{ann}_R(M))$ and let $\mathcal{Y} = \operatorname{Spec}_R(M)$. Define a map $\varphi : \mathcal{X} \to \mathcal{Y}$ by $\varphi(P) = PM$, where $P \in \mathcal{X}$. Then by the proof of Theorem 2.5, φ is a one-to-one correspondence. Let $\mathcal{X}' = N(M) \cap \operatorname{Max}(R)$ and let $\mathcal{Y}' = \operatorname{Max}_R(M)$. Since every maximal ideal of R is prime, it follows from Lemma 2.6 that $\mathcal{X}' \subseteq \mathcal{X}$. We can now consider the restriction of φ to $\mathcal{X}' \varphi|_{\mathcal{X}'} : \mathcal{X}' \to \mathcal{Y}$. Then since φ is one-to-one, so is $\varphi|_{\mathcal{X}'}$.

Let P be a maximal ideal of R such that $M \neq PM$. Then by Lemma 1.1, there is a maximal submodule K of M such that $PM \subseteq K$. Hence, $P \subseteq PM :_R M \subseteq K :_R M \neq R$ and so $P = K :_R M$. Thus, $K = (K :_R M)M = PM$. This shows that PM is a maximal submodule of M. Therefore, in particular, $\operatorname{Im}(\varphi|_{\mathcal{X}'}) \subseteq \mathcal{Y}'$. Further, it follows from Lemma 1.1 that $\mathcal{Y}' \subseteq \operatorname{Im}(\varphi|_{\mathcal{X}'})$. Hence, $\operatorname{Im}(\varphi|_{\mathcal{X}'}) = \mathcal{Y}'$. Thus, $\varphi|_{\mathcal{X}'} : \mathcal{X}' \to \mathcal{Y}'$ is a one-to-one correspondence. Moreover, it is clear that $\varphi|_{\mathcal{X}'}$ is order-preserving.

If M is a non-zero multiplication module over a commutative ring R, then it follows from Corollary 2.7 that every maximal submodule of M is of the form PM where $P \in N(M) \cap \text{Max}(R)$.

3. Multiplication modules

Let I be an ideal of a commutative ring R. Recall from [6, p.792] that an R-module M is said to be I-torsion if for each $m \in M$ there exists an element $i \in I$ such that (1-i)m = 0.

Let I be an ideal of R and M a finitely generated R-module. Then it follows from standard determinant argument that M is I-torsion if and only if M = IM.

LEMMA 3.1. Let I be an ideal of R and M a multiplication R-module. Then M is I-torsion if and only if M = IM.

Proof. Adapt the proof of [10, p.229, Lemma 6] to show this. \Box

Let P be a maximal ideal of a commutative ring R. Recall [10, p.223] that an R-module M is said to be P-cyclic if there exists an element $x \in M$ and an element $p \in P$ such that $(1-p)M \subseteq Rx$.

DEFINITION 3.2. Let I be an ideal of a commutative ring R. An R-module M is said to be I-cyclic if there exists a maximal ideal P of R containing I such that M is P-cyclic.

Every R-module is R-torsion but no R-module is R-cyclic.

Let P be a maximal ideal of a commutative ring R. Let M be an R-module. Then we remark that M is P-cyclic when we regard P as an ideal if and only if it is P-cyclic when we regard P as a maximal ideal.

PROPOSITION 3.3. Let R be a commutative ring and M an R-module. Then the following statements are equivalent.

- (1) For every proper ideal I of R, M is I-cyclic.
- (2) For every maximal ideal P of R, M is P-cyclic.

Proof. Assume (1). Let P be any maximal ideal of R. Then P is a proper ideal of R. By (1), there exists a maximal ideal Q of R with $Q \supseteq P$ such that M is Q-cyclic. Since P is maximal, we must have Q = P. Hence, M is P-cyclic.

Assume (2). Let I be any proper ideal of R. There exists a maximal ideal P of R such that $P \supseteq I$. By (2), M is P-cyclic. Thus, M is I-cyclic.

THEOREM 3.4. Let R be a commutative ring and let M be a non-zero R-module. Then the following statements are equivalent.

- (1) M is a multiplication module.
- (2) For every ideal I of R either M is I-torsion or M is I-cyclic.
- (3) For every maximal ideal P of R either M is P-torsion or M is P-cyclic.

Proof. Assume (1). Let I be any ideal of R. Then M = IM or $M \neq IM$.

Assume that M = IM. Then by Lemma 3.1, M is I-torsion.

Assume now that $M \neq IM$. Then by Lemma 1.1, there is a maximal submodule K of M such that $IM \subseteq K$. Further, by Lemma 1.1, there is

a maximal ideal P of R such that K = PM. Since $PM \neq M$, it follows from Lemma 2.6 that $\operatorname{ann}_R(M) \subseteq P$. Hence, by Lemma-2.4, $(PM:_R M) = P$. Thus, $I \subseteq (IM:_R M) \subseteq (K:_R M) = (PM:_R M) = P$. Since $PM \subsetneq M$, we can take an element $x \in M \setminus PM$. By (1), there exists an ideal J of R such that Rx = JM. If J were a subset of P, then x would be an element of PM since $x \in Rx = JM \subseteq PM$. Hence, $J \not\subseteq P$. Since P is maximal, we have P + J = R. There exists an element $p \in P$ such that $1 - p \in J$. Further, $(1 - p)M \subseteq JM = Rx$. Hence, M is P-cyclic. This shows that M is I-cyclic. Therefore, (2) follows.

It follows from the remark just prior to Proposition 3.3 that (2) implies (3).

Finally, it follows from [5, Theorem 1.2] that (3) implies (1).

THEOREM 3.5. Let R be a commutative ring and M a non-zero multiplication R-module. Then

- (1) $Supp(M) \subseteq N(M)$.
- (2) $N(M) \cap V(\operatorname{ann}_R(M)) = \operatorname{Supp}(M) \cap V(\operatorname{ann}_R(M)).$

Proof. (1) There are two ways to prove this.

Method I. Use Lemma 3.1 to show this.

Method II. Assume that P is a prime ideal of R and M is a non-zero multiplication module with M = PM. By Lemma 1.1, M_P is cyclic. Further, $M_P = PR_PM_P$. By Nakayama's Lemma, $M_P = 0$.

(2) By (1), it suffices to prove

$$N(M) \cap V(\operatorname{ann}_R(M)) \subseteq \operatorname{Supp}(M) \cap V(\operatorname{ann}_R(M)).$$

Assume that $P \in N(M) \cap V(\operatorname{ann}_R(M))$. By Lemma 3.1, M is not P-torsion. By Theorem 3.4, M is P-cyclic. Hence, there exists an element $x \in M$ and an element $p \in P$ such that $(1-p)M \subseteq Rx$. Then x/1 is a non-zero element of M_P . For, otherwise there exists an element $s \in R \setminus P$ such that sx = 0; hence

$$s(1-p)M \subseteq s(Rx) = (sR)x = (Rs)x = R(sx) = 0$$

and so $s(1-p) \in \operatorname{ann}_R(M) \subseteq P$, a contradiction. Therefore, $M_P \neq 0.\square$

4. Ideals and submodules of multiplication modules.

In this section we will be concerned with relationships between the ideals of a commutative ring and the submodules of a non-zero multiplication module over the commutative ring.

PROPOSITION 4.1. Let R be a commutative ring and M a non-zero multiplication module. Then the following statements hold.

- (1) For every ideal I of R with $M \neq IM$, there exists a maximal ideal P of R containing $I + \operatorname{ann}_R(M)$ such that PM is a maximal submodule of M.
- (2) If P is a prime ideal of R containing $\operatorname{ann}_R(M)$ such that $M \neq PM$, then P + J = R for every ideal J of R with M = JM.
- (3) For every ideal I of R with $M \neq IM$ and for every ideal J of R with M = JM, there exists a maximal ideal P of R containing $I + \operatorname{ann}_R(M)$ such that P + J = R and PM is a maximal submodule of M.

Proof. (1) Let I be any ideal of R with $M \neq IM$. Then by Lemma 1.1, there is a maximal submodule K of M such that $IM \subseteq K$. Further, by Lemma 1.1, there is a maximal ideal P of R such that K = PM. Since $PM \neq M$, it follows Lemma 2.6 that $\operatorname{ann}_R(M) \subseteq P$. Suppose that $I \nsubseteq P$. Then I + P = R. Since $IM \subseteq K = PM$, it then follows that

$$M = RM = (I + P)M \subseteq IM + PM = PM$$
.

Hence, M = PM. This contradiction shows that $I \subseteq P$. Thus, $I + \operatorname{ann}_R(M) \subseteq P$.

(2) Let P be any prime ideal of R containing $\operatorname{ann}_R(M)$ such that $M \neq PM$. Let J be any ideal of R with M = JM. Then there exists an element $x \in M \setminus PM$. Further, since M is a multiplication module and M = JM, it follows from Lemma 3.1 that M is J-torsion. Hence, there exists an element $j \in J$ such that (1-j)x = 0. Further, $(1-j)x = 0 \in PM$. By Lemma 2.4(2), PM is a prime submodule of M. Hence, $1-j \in P$. Therefore, P+J=R.

(3) follows from (1) and (2).
$$\Box$$

Given an ideal I of a commutative ring R, the radical of I, denoted by \sqrt{I} , is defined by $\{r \in R \mid r^n \in I \text{ for some positive integer } n\}$. It is well-known that if I is an ideal of a commutative ring R, then $\sqrt{I} = \bigcap_{P \in V(I)} P$. We will generalize this.

THEOREM 4.2. Let R be a commutative ring. Let M be a non-zero multiplication module. Then for every ideal I of R,

$$\left(\left(\left(\sqrt{I+\operatorname{ann}_R(M)}\right)M\right):_RM\right)=\bigcap_{P\in V(I+\operatorname{ann}_R(M))\bigcap N(M)}P.$$

Proof. Let I be any ideal of R. Assume that IM = M. Then

$$R = (M :_R M) = (IM :_R M) \subseteq (((\sqrt{I + \operatorname{ann}_R(M)})M) :_R M).$$

Hence, $((\sqrt{I + \operatorname{ann}_R(M)})M) :_R M) = R$. Let $A = V(I + \operatorname{ann}_R(M)) \cap N(M)$. Then $A = \emptyset$. For, otherwise there exists a prime ideal P of R containing $I + \operatorname{ann}_R(M) \subseteq P$ and $PM \neq M$. Then

$$M = IM = (I + \operatorname{ann}_R(M))M \subseteq PM \subsetneq M,$$

a contradiction. Hence, $\bigcap_{p \in \mathcal{A}} P = R$. Therefore,

$$\left(\left(\left(\sqrt{I+\operatorname{ann}_R(M)}\right)M\right):_RM\right)=\bigcap_{p\in\mathcal{A}}P.$$

Now, assume $IM \neq M$. Then $I + \operatorname{ann}_R(M) \neq R$. There exists a prime ideal Q of R such that $I + \operatorname{ann}_R(M) \subseteq Q$. Let $\mathcal{P} = V(I + \operatorname{ann}_R(M))$. Then $Q \in \mathcal{P}$. In particular, $\mathcal{P} \neq \emptyset$. Then it is easy to show that

$$\left(\left(\bigcap_{P\in\mathcal{P}}(PM)\right):_{R}M\right)=\bigcap_{P\in\mathcal{P}}(PM:_{R}M).$$

By Proposition 4.1(1), $\mathcal{A} \neq \emptyset$. Let $\mathcal{B} = V(I + \operatorname{ann}_R(M)) \cap (\operatorname{Spec}(R) \setminus N(M))$. Then $\mathcal{P} = \mathcal{A} \cup \mathcal{B}$. Hence, by Lemma 1.1 and Lemma 2.4(1), we have

$$\left(\left(\left(\sqrt{I + \operatorname{ann}_{R}(M)}\right) M\right) :_{R} M\right)$$

$$= \left(\left(\left(\bigcap_{P \in \mathcal{P}} P\right) M\right) :_{R} M\right)$$

$$= \left(\left(\bigcap_{P \in \mathcal{P}} (PM)\right) :_{R} M\right)$$

$$= \bigcap_{P \in \mathcal{P}} \left(PM :_{R} M\right)$$

$$= \left(\bigcap_{P \in \mathcal{A}} \left(PM :_{R} M\right)\right) \bigcap \left(\bigcap_{P \in \mathcal{B}} \left(PM :_{R} M\right)\right)$$

$$= \bigcap_{P \in \mathcal{A}} P.$$

COROLLARY 4.3. If M is a non-zero faithfully flat multiplication module over a commutative ring R, then for every ideal I of R,

$$\left(\left(\left(\sqrt{I+\operatorname{ann}_R(M)}\right)M\right):_RM\right)=\sqrt{I+\operatorname{ann}_R(M)}.$$

Proof. Let I be any ideal of R. Then with the same notations as in the proof of Theorem 4.2,

$$\sqrt{I+\mathrm{ann}_R(M)}=\bigcap_{P\in\mathcal{P}}P=\Big(\bigcap_{P\in\mathcal{A}}P\Big)\bigcap\Big(\bigcap_{P\in\mathcal{B}}P\Big).$$

If M is faithfully flat, it follows from [9, Theorem 7.2] that $\mathcal{B} = \emptyset$. Hence, by Theorem 4.2,

$$\sqrt{I + \operatorname{ann}_R(M)} = \bigcap_{P \in \mathcal{A}} P = \left(\left(\sqrt{I + \operatorname{ann}_R(M)} M :_R M \right). \quad \Box$$

For any ideal I of R, let $I^0M = M$ and $I^{\infty}M = \bigcap_{n=1}^{\infty} (I^nM)$. [6, p.791, Lemma 3.1 (ii)] can be recast as follows.

LEMMA 4.4. Let R be a commutative ring and P an ideal of R. Let M be an R-module such that PM is a multiplication module. Then for any submodule N of PM, either $N \subseteq P^{\infty}M$ or there exists a positive integer k and k ideals I_0, I_1, \dots, I_{k-1} of R with $I_0 \nsubseteq P$, $I_1 \nsubseteq P^2, \dots, I_{k-1} \nsubseteq P^k$ such that

$$N = I_0 P^k M = I_1 P^{k-1} M = \dots = I_{k-1} P M.$$

Proof. Assume that N is a submodule of PM such that $N \nsubseteq P^{\infty}M$. Then there exists a positive integer k such that $N \subseteq P^kM$ but $N \nsubseteq P^{k+1}M$. Since for each $i \in \{0,1,\cdots,k-1\}$, $N \subseteq P^kM \subseteq P^{k-i}M$ and by [6, Lemma 3.1(i)] $P^{k-i}M$ is a multiplication module, we have, for each $i \in \{0,1,\cdots,k-1\}$, $N = (N:_R P^{k-i}M)P^{k-i}M$. Further, $(N:_R P^{k-i}M) \supseteq \operatorname{ann}_R(P^{k-i}M)$ implies $(N:_R P^{k-i}M) + \operatorname{ann}_R(P^{k-i}M) = N:_R P^{k-i}M$. Hence, it follows from Lemma 1.1 and the modular law

that for each $i \in \{0, 1, \dots, k-1\}$,

$$\begin{split} N &= N \cap P^k M \\ &= N \cap (P^i P^{k-i} M) \\ &= ((N:_R P^{k-i} M) P^{k-i} M) \cap (P^i P^{k-i} M) \\ &= (((N:_R P^{k-i} M) + \operatorname{ann}_R (P^{k-i} M)) \\ &\quad \cap (P^i + \operatorname{ann}_R (P^{k-i} M)) P^{k-i} M \\ &= ((N:_R P^{k-i} M) \cap (P^i + \operatorname{ann}_R (P^{k-i} M))) P^{k-i} M \\ &= (((N:_R P^{k-i} M) \cap P^i) + \operatorname{ann}_R (P^{k-i} M)) P^{k-i} M \\ &= ((N:_R P^{k-i} M) \cap P^i) P^{k-i} M \end{split}$$

Now, for each $i \in \{0, 1, \dots, k-1\}$, let $I_i = (N :_R P^{k-i}M) \cap P^i$. Then

$$N = I_0 P^k M = I_1 P^{k-1} M = \dots = I_{k-1} P M.$$

Further, since $N \nsubseteq P^{k+1}M$, we get $I_0 \nsubseteq P$, $I_1 \nsubseteq P^2$, \cdots , $I_{k-1} \nsubseteq P^k$, as required.

Let R be a commutative ring and M an R-module. The ideal $\theta(M) = \sum_{m \in M} (Rm :_R M)$ of R has proved useful in studying multiplication modules. We generalize this ideal as follows: $\theta(IM) = \sum_{x \in IM} (Rx :_R M)$ for an ideal of a commutative ring R and an R-module M. It is always true that $I\theta(M) \subseteq \theta(IM)$ for every ideal I of a commutative ring R and for every module M over the ring R. If M is a multiplication module over a commutative ring R, then for every ideal I of R,

$$IM = \sum_{x \in IM} Rx$$

$$= \sum_{x \in IM} ((Rx :_R M) M)$$

$$= \left(\sum_{x \in IM} (Rx :_R M)\right)M$$

$$= \theta(IM)M$$

and $IM = (IM :_R M)M$. Hence, we have the following result.

LEMMA 4.5. Let R be a commutative ring and M a multiplication R-module. Then the following conditions are equivalent:

- (1) M is finitely generated, and
- (2) for every ideal I of R, $\theta(IM) = (IM :_R M) = I + \operatorname{ann}_R(M)$.

Proof. $(1) \Rightarrow (2)$ follows from [10, Theorem 9 Corollary].

 $(2) \Rightarrow (1)$. (2) gives $\theta(M) = R$. Hence, it follows from [3, Corollary 2.2] that M is finitely generated.

THEOREM 4.6. Let R be a commutative ring and let P be a maximal ideal of R. Let M be a non-zero R-module satisfying

- (1) M is a finitely generated multiplication module,
- (2) PM is a multiplication module, and
- (3) $P^nM \neq P^{n+1}M$ for every positive integer n.

Then
$$\bigcap_{n=1}^{\infty} (P^n + \operatorname{ann}_R(M)) \in V(\operatorname{ann}_R(M)) = \operatorname{Supp}(M) \subseteq N(M)$$
.

Proof. By [6, Corollary 3.2], $P^{\infty}M$ is a prime submodule of M. By the statement just prior to Lemma 2.6, there exists a prime ideal Q of R containing $\operatorname{ann}_R(M)$ with $QM \neq M$ such that $P^{\infty}M = QM$. It suffices to prove that $Q = \bigcap_{n=1}^{\infty} (P^n + \operatorname{ann}_R(M))$.

By Lemma 1.1, we have

$$QM = P^{\infty}M = \bigcap_{n=1}^{\infty} (P^n M) = \left(\bigcap_{n=1}^{\infty} (P^n + \operatorname{ann}_R(M))\right) M.$$

Hence, by Lemma 4.5, we have

$$Q = \theta(QM) = \theta\left(\left(\left(\bigcap_{n=1}^{\infty} (P^n + \operatorname{ann}_R(M))\right)\right)M\right)$$
$$= \bigcap_{n=1}^{\infty} (P^n + \operatorname{ann}_R(M)),$$

as required.

Note that intersection of powers of multiplication ideals are considered in [4, Theorem 2.2]. [4, Theorem 4.1] says: Let (R, P) be a quasi-local ring whose maximal ideal P is finitely generated. Then R is Noetherian if and only if for every finitely generated ideal I of R, $\bigcap_{n=1}^{\infty} (P^n + I) = I$. Therefore, by Theorem 4.6, we have the following result.

COROLLARY 4.7. Let R be a Noetherian local ring with unique maximal ideal P. Let M be a non-zero R-module satisfying

- (1) M is a multiplication module,
- (2) PM is a multiplication module, and
- (3) $P^nM \neq P^{n+1}M$ for every positive integer n.

Then $R/\operatorname{ann}_R(M)$ is a discrete valuation domain.

Proof. Over a quasi-local ring a multiplication module is cyclic. So $M = R/\operatorname{ann}_R(M)$. Now $PM = P/\operatorname{ann}_R(M)$ is principal so $R/\operatorname{ann}_R(M)$ is a PIR. Then (3) gives that $R/\operatorname{ann}_R(M)$ is a DVR. Further, by Theorem 4.6, $R/\operatorname{ann}_R(M)$ is an integral domain.

Notice that if a module over a commutative ring satisfies the assumptions of Corollary 4.7, then it is Noetherian module but not Artinian.

COROLLARY 4.8. Let R be a Noetherian local ring with unique maximal ideal P satisfying

- (1) P is a multiplication ideal of R and
- (2) $P^n \neq P^{n+1}$ for every positive integer n.

Then R is a discrete valuation domain.

References

- [1] D. D. Anderson, Some Remarks on Multiplication Ideals, Math. Japon. 25 (1980), 463-469.
- [2] _____, Some Remarks on Multiplication Modules II, Comm. Algebra 28 (2000), no. 5, 2577–2583.
- [3] D. D. Anderson and Yousef Al-Shaniafi, Multiplication Modules and the Ideal theta(M), Comm. Algebra 30 (2002), no. 7, 3383–3390.
- [4] D. D. Anderson, J. Matijevic, and Nichols, The Krull Intersection Theorem II, Pacific J. Math. 66 (1976), no. 1, 15–22.
- [5] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no. 4, 755-779.
- [6] _____, Multiplication Modules and Theorems of Mori and Mott, Comm. Algebra 16 (1988), no. 4, 781–796.
- [7] C. P. Lu, M-radicals of submodules, Math. Japan. 34 (1989), no. 2, 211–219.
- [8] _____, Spectra of Modules, Comm. Algebra 23 (1995), no. 10, 3741-3752.
- [9] Hideyuki Matsumura, Commutative ring theory, Cambridge University Press,
- [10] P. F. Smith, Some remarks on multiplication modules, Arch. Math. 50 (1988), 223-235.

Sang Cheol Lee
Department of Mathematics Education
Chonbuk National University
Chonju 561-756, Korea
E-mail: scl@chonbuk.ac.kr

Sunah Kim Department of Mathematics Chosun University Kwangju 501-759, Korea E-mail: sakim@mail.chosun.ac.kr

Sang-Cho Chung Department of Mathematics Chungnam National University Taejon 305-764, Korea E-mail: scchung@math.cnu.ac.kr