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IDEALS AND SUBMODULES OF
MULTIPLICATION MODULES

SANG CHEOL LEE*, SUNAH KiM, AND SANG-CHO CHUNG

ABSTRACT. Let R be a commutative ring with identity and let M
be an R-module. Then M is called a multiplication module if for
every submodule N of M there exists an ideal I of R such that
N =IM. Let M be a non-zero multiplication R-module. Then we
prove the following:
(1) there exists a bijection : N(M)NV (anng(M)) — Specr(M)
and in particular, there exists a bijection :

N(M) N Max(R) — Maxg(M),

(2) N(M)nV(anng(M)) = Supp(M) N V(anng(M)), and
(8) for every ideal I of R,

(/T + anng(M))M) :r M) = Npe N M)V (ann g (1)) P-

The ideal (M) = 3°, -p(Rm :g M) of R has proved useful in
studying multiplication modules. We generalize this ideal to prove
the following result: Let R be a commutative ring with identity,
P € Spec(R), and M a non-zero R-module satisfying

(1) M is a finitely generated multiplication module,
(2) PM is a multiplication module, and
(3) P"M # P"t1M for every positive integer n,

then N2, (P™ + anng(M)) € V{(anng(M)) = Supp(M) C N(M).

1. Introduction

Throughout this paper, we consider only commutative rings with
identity and modules which are unitary. Let R be a commutative ring
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and M an R-module. Then Spec(R) denotes the set of all prime ideals
of R and Specgr(M) denotes the set of all prime submodules of M. Obvi-
ously, Specr(R) = Spec(R). If N is a submodule of M, then (N :r M)
is defined by {r € R|rM C N}. In particular, (0 :g M) is called the
annihilator of M and is denoted by anng(M). There are three subsets
of Spec(R) which depend on M:

(1) N(M) = {P € Spec(R) | PM # M},

(2) V(anng(M)) = {P € Spec(R) | anng(M) C P},

(3) Supp(M) = {P € Spec(R) | Mp # 0}.
Max(R) denotes the set of all maximal ideals of R and Maxg (M) denotes
the set of all maximal submodules of M. Clearly, Maxg(R) = Max(R).
By a quasi-local ring, we mean a commutative ring with a unique max-
imal ideal.

Let R be a commutative ring and let M be an R-module. Then a
submodule N of M is said to be extended if N = IM for some ideal I of
R. M is called a multiplication module if every submodule of M is ex-
tended. For example, every proper submodule of the Z-module Z(p*) is
a multiplication module but the Z-module Z(p®) itself is not. We gener-
alize [8, Theorem 6] as follows. If M is a non-zero multiplication module
then there exists a bijection : N(M) NV (anng(M)) — Specr(M) and
in particular, there exists a bijection : N (M) N Max(R) — Maxg(M).

In commutative ring theory, it is well-known that, for every non-zero
finitely generated module over a commutative ring R,

0 # V(anng(M)) = Supp(M).

In Section 2, we prove that if M is a non-zero multiplication module
over a commutative ring R, then N(M) NV (anng(M)) = Supp(M) N
V(anng(M)).

In Section 3, we are concerned with relationships between the ideals
of a commutative ring and the submodules of a multiplication module
over the ring. A well-known result of commutative algebra saying that
the radical of an ideal I of a commutative ring is the intersection of
all prime ideals containing I is generalized to non-zero multiplication
modules. Let R be a commutative ring and M an R-moodule. For an
ideal I of R, we define the ideal §(IM) =3 ;,,(Rz :r M) of R. This
is a generalization of the ideal (M) of R which was introduced in [1]
and recently, the ideal (M) was studied in [3]. Let R be a commutative
ring with identity and let P € Spec(R). If M is a non-zero R-module
satisfying

(1) M is a finitely generated multiplication module,
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(2) PM is a multiplication module, and
(3) P"M # P! M for every positive integer n,

then we prove by making use of the notion of the ideal (M) of R that

ﬂ (P" + anng(M)) € V(anng(M)) = Supp(M) C N(M).

n=1

Let R be a quasi-local ring with unique maximal ideal P. Let M be a
non-zero R-module satisfying

(1) M is a finitely generated multiplication module,
(2) PM is a multiplication module, and
(3) P"M # Pt M for every positive integer n.

Then we prove that R /anng(M) is a discrete valuation domain. Finally,
in particular, it is found under what conditions a Noetherian local ring
is a discrete valuation domain.

Our first lemma gives three well-known results that will be used
throughout this paper.

LEMMA 1.1. Let R be a commutative ring and M an R-module.

(1) If M is a multiplication R-module, then it is locally cyclic.
(2) If M is a multiplication R-module, then

- ( () -+san (o)) )

for any non-empty collection T of ideals of R.
(3) Let M be a non-zero multiplication R-module. Then
(i) for every proper submodule N of M, there exists K €
Maxg(M) of M such that N C K, and
(ii) K € Maxg(M) if and only if there exists P € Max(R) such
that K = PM # M.

Proof. (1) Let M be a multiplication R-module. Let P be any ele-
ment of Spec(R). Then Mp is a multiplication Rp-module by [2, Corol-
lary 3.5]. Since over a quasi-local ring every multiplication module is
cyclic, Mp is cyclic. (2) follows from [5, Corollary 1.7]. (3) follows from
[5, Theorem 2.5]. a
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2. Prime spectra of multiplication modules

If M is a module over a commutative ring R, then for every sub-
module N of M, (N :g M) = anng(M /N ). The following lemma was
motivated by definitions in [5, p.765] and [6, p.791].

LEMMA 2.1. Let M be a non-zero R-module and let N be a submod-
ule of M with N # M. Then the following statements are equivalent:

(1) (N :r K) = (N :g M) for every submodule K of M such that
K2N.

(2) Ifax € N, wherea € R andz € M, thena € (N :g M) orx €
N.

Proof. Assume (1). Assume axz € N, where a € R and z € M.
Assume £ ¢ N. Then NG N+ Rz C M. By (1), (N :r (N + Rz)) =
(N :g M). Since az € N, we have a(N + Rz) = aN + Raz C N. This
shows that a € (N :gr (N + Rzx)). Hence, a € (N :gr M).

Conversely, assume (2). Let K be any submodule of M such that
K 2N. Then K /N € M /N and so,

(N :gr K)=anng(K /N) 2anng(M /N)= (N :g M)

Let a be any element of (N :g K). Since N G K, we can find an element
z of K\N. Then az € N. Hence, by (2),a € (N :g M). d0

Let R be a commutative ring and let M be a non-zero R-module. Let
N be a submodule of M. Then N is called a prime submodule of M if

(1) N # M and

(2) N satisfies either (hence both) of the statements in Lemma 2.1.

Let R be a commutative ring and M an R-module. Then a submodule
N of M is called an extended submodule if there exists an ideal I of R such
that N = IM. M is called a multiplication module if every submodule
of M is extended.

ExAMPLE 2.2. Consider the ring Z of integers. Let p be a fixed prime
number. If we adapt the proof of the well-known fact that Z(p™) is
divisible, then we can get the following:

(1) the only proper, extended submodule of the Z-module Z(p*) is
0, and

(2) every proper submodule of the Z-module Z(p™) is a multiplica-
tion module but the Z-module Z(p*°) itself is not.
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Every finite-dimensional vector space with dimension greater than 1
cannot be a multiplication module. O

Compare the next result with [5, Corollary 1.7).

PROPOSITION 2.3. Let R be a commutative ring and M an R-module.
Then M is a multiplication module ifand only if (4c 4 A = (Naca(A R
M))M for any non-empty collection A of submodules of M.

Proof. Assume that M is a multiplication module. Let A be any
non-empty collection of submodules of M. Then

A=) A4):rMM=([)(4:rM)M

AecA AcA AcA

with the first equality following since M is a multiplication module and
the second since residuation distributes over intersection.

Conversely, assume that ()¢ 4 A = (N ge4(A :r M))M for any non-
empty collection A of submodules of M. Let N be any submodule of
M. Then {N} is a non-empty collection of a submodule of M. By our
assumption, N = (N :g M)M. Hence, M is a multiplication module. []

Let R be a ring. If M is a non-zero R-module, then anng(M) # R.
By Zorn’s Lemma, V(anng(M)) # 0.

LEMMA 2.4. Let R be a commutative ring. Let M be a non-zero
multiplication module. Then
_ _ | P+ anng(M) if P<€ N(M)
(1) (PM :p M) = R if P¢N(M)
(2) PM is an element of Specg(M) if P € N(M).

Proof. (1) Clearly, P+anng(M) C (PM :g M). Conversely, let a be
any element of (PM :g M). Then aM C PM. Assume that P € N(M).
Then we can take an element x € M\PM. Hence, axz € PM.

M can be given R /anng(M)-module structure as follows: for any
r € R and m € M, define (r + anng(M))m = rm. Then the module
structure is well-defined. M becomes an R /anng(M)-module. More-
over, as an R /anng(M)-module, M is a multiplication module. Since
ax € PM, we have (a+anng(M))z € (P /anng(M))M. Further, since
x ¢ PM, we have z ¢ (P /anng(M))M. By [5, Lemma 2.10}, we have
a+ anng(M) € P /anng(M). This implies a € P + anng(M). Thus,
(PM :g M) C P + anng(M). Therefore, (PM :g M) = P + anng(M).
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Assume now that PM = M. Then (PM :g M) = (M :g M) =R.

(2) Let ax € PM, where a € R and x € M. Then as in the proof
of (1), we can show that either a € P + anng(M) or ¢ € PM. If
a € P+ anng(M), then a € (PM :g M). Thus, either a € (PM :g M)
or z € PM. Hence, PM is a prime submodule of M if PM # M. O

The following result generalizes [8, Theorem 6. (¢) = (d)] and [7,
p.216, Property 1].

THEOREM 2.5. Let R be a commutative ring. Let M be a non-zero
multiplication module. Then there is a one-to-one order-preserving cor-
respondence: N(M)(\V (anng(M)) — Specr(M)

Proof. Let X = N(M)NV(anng(M)) and let Y = Specr(M). De-
fine a map ¢ : X — Y by ¢(P) = PM, where P € X. Then by
Lemma 2.4(2), ¢ is well-defined. Now, define a map ¢ : J — X by
¥(N) = (N :g M), where N € Y. Let N be any prime submodule of M.
Then anng(M /N ) is a prime ideal of R and anng(M) C anng(M /N)
by definitions and hence (N :g M) is a prime ideal of R contain-
ing anng(M). Further, since M is a multiplication module, we have
(N :r M)M = N # M. Hence, 1 is well-defined.

Let P be any element of X'. Then by Lemma 2.4(1),

(% 0 9)(P) = ¥(o(P)) = $(PM) = (PM :p M) = P.

Hence, ¥ o ¢ = 1x. Thus, ¢ is one-to-one.
Let N be any element of ). Then since M is a multiplication module,

(o) (N) = ¢(¥(N)) = ¢(N :r M) = (N :g M\)M = N

Hence, ¢ o) = 1y. Thus, ¢ is onto. Therefore, ¢ is a one-to-one
correspondence between X and Y. Moreover, it is clear that ¢ is order-
preserving. O

If M is a non-zero multiplication module over a commutative ring R,
then it follows from Theorem 2.5 that every prime submodule of M is
of the form PM, where P € N(M) NV (anng(M)).

LEMMA 2.6. Let R be a commutative ring and M a non-zero module.
Then N(M) N Max(R) C V(anngr(M)).
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Proof. Assume that P is a maximal ideal of R such that PM # M.
Suppose anng(M) ¢ P. Then P + anng(M) = R. Hence,

M = RM = (P + anng(M))M C PM + (annp(M))M = PM,
and so M = PM. This contradiction shows that anng(M) C P. O

Let R be a commutative ring and let M be a non-zero multiplication
module. Then by Lemma 1.1 or [8, Theorem 2 (4)], Maxg(M) # 0.
Compare the following result with [8, Theorem 2 (1)].

COROLLARY 2.7. Let R be a commutative ring and M a non-zero
multiplication module. Then there is a one-to-one order-preserving cor-
respondence : N(M) N Max(R) — Maxg(M).

Proof. Let X = N(M) N V(anng(M)) and let Y = Specr(M).
Define a map ¢ : X — Y by ¢(P) = PM, where P € X. Then
by the proof of Theorem 2.5, ¢ is a one-to-one correspondence. Let
X' = N(M)NMax(R) and let )’ = Maxg(M). Since every maximal
ideal of R is prime, it follows from Lemma 2.6 that A’ C X. We can
now consider the restriction of ¢ to X’ ¢|x: : X’ — Y. Then since ¢ is
one-to-one, so is | x-.

Let P be a maximal ideal of R such that M # PM. Then by Lemma
1.1, there is a maximal submodule K of M such that PM C K. Hence,
PCPM:gMCK:gM#Randso P=K :g M. Thus, K =
(K :g M)M = PM. This shows that PM is a maximal submodule
of M. Therefore, in particular, Im(p|x/) C Y’. Further, it follows
from Lemma 1.1 that V' C Im(yp|x/). Hence, Im(p|x/) = Y’. Thus,
©lar : X' — V' is a one-to-one correspondence. Moreover, it is clear
that |+ is order-preserving. O

If M is a non-zero multiplication module over a commutative ring R,
then it follows from Corollary 2.7 that every maximal submodule of M
is of the form PM where P € N(M) N Max(R).

3. Multiplication modules

Let I be an ideal of a commutative ring R. Recall from [6, p.792] that
an R-module M is said to be I-torsion if for each m € M there exists
an element ¢ € I such that (1 —¢)m = 0.

Let I be an ideal of R and M a finitely generated R-module. Then it
follows from standard determinant argument that M is I-torsion if and

only if M = IM.



940 Sang Cheol Lee, Sunah Kim, and Sang-Cho Chung

LEMMA 3.1. Let I be an ideal of R and M a multiplication R-module.
Then M is I-torsion if and only if M = IM.

Proof. Adapt the proof of [10, p.229, Lemma 6] to show this. 0

Let P be a maximal ideal of a commutative ring R. Recall [10, p.223]
that an R-module M is said to be P-cyclic if there exists an element
z € M and an element p € P such that (1 — p)M C Rz.

DEFINITION 3.2. Let I be an ideal of a commutative ring R. An
R-module M is said to be I-cyclic if there exists a maximal ideal P of
R containing I such that M is P-cyclic.

Every R-module is R-torsion but no R-module is R-cyclic.

Let P be a maximal ideal of a commutative ring R. Let M be an
R-module. Then we remark that M is P-cyclic when we regard P as an
ideal if and only if it is P-cyclic when we regard P as a maximal ideal.

PRrROPOSITION 3.3. Let R be a commutative ring and M an R-module.
Then the following statements are equivalent.

(1) For every proper ideal I of R, M is I-cyclic.
(2) For every maximal ideal P of R, M is P-cyclic.

Proof. Assume (1). Let P be any maximal ideal of R. Then P is
a proper ideal of R. By (1), there exists a maximal ideal @ of R with
@ 2O P such that M is @Q-cyclic. Since P is maximal, we must have
@ = P. Hence, M is P-cyclic.

Assume (2). Let I be any proper ideal of R. There exists a maximal
ideal P of R such that P D I. By (2), M is P-cyclic. Thus, M is
I-cyclic. O

THEOREM 3.4. Let R be a commutative ring and let M be a non-zero
R-module. Then the following statements are equivalent.

(1) M is a multiplication module.

(2) For every ideal I of R either M is I-torsion or M is I-cyclic.

(3) For every maximal ideal P of R either M is P-torsion or M is
P-cyclic.

Proof. Assume (1). Let I be any ideal of R. Then M = IM or
M #IM.

Assume that M = IM. Then by Lemma 3.1, M is I-torsion.

Assume now that M # IM. Then by Lemma 1.1, there is a maximal
submodule K of M such that M C K. Further, by Lemma 1.1, there is
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a maximal ideal P of R such that K = PM. Since PM # M, it follows
from Lemma 2.6 that anng(M) C P. Hence, by Lemma-2.4, (PM :g
M)=P. Thus, I C(IM :g M) C (K :g M) = (PM :g M) = P. Since
PM G M, we can take an element x € M\PM. By (1), there exists an
ideal J of R such that Rz = JM. If J were a subset of P, then x would
be an element of PM since ¢ € Rx = JM C PM. Hence, J ¢_ P. Since
P is maximal, we have P + J = R. There exists an element p € P such
that 1 — p € J. Further, (1 — p)M C JM = Rx. Hence, M is P-cyclic.
This shows that M is I-cyclic. Therefore, (2) follows.

It follows from the remark just prior to Proposition 3.3 that (2) im-
plies (3).

Finally, it follows from [5, Theorem 1.2] that (3) implies (1). O

THEOREM 3.5. Let R be a commutative ring and M a non-zero mul-
tiplication R-module. Then
(1) Supp(M) € N(M).
(2) N(M)NV(anng(M)) = Supp(M) NV (anng(M)).

Proof. (1) There are two ways to prove this.

Method I. Use Lemma 3.1 to show this.

Method II. Assume that P is a prime ideal of R and M is a non-zero
multiplication module with M = PM. By Lemma 1.1, Mp is cyclic.
Further, Mp = PRpMp. By Nakayama’s Lemma, Mp = 0.

(2) By (1), it suffices to prove

N(M)NV(anng(M)) C Supp(M) N V(anng(M)).

Assume that P € N(M) N V(anng(M)). By Lemma 3.1, M is not P-
torsion. By Theorem 3.4, M is P-cyclic. Hence, there exists an element
x € M and an element p € P such that (1 — p)M C Rz. Then z /1
is a non-zero element of Mp. For, otherwise there exists an element
s € R\P such that sz = 0; hence

5(1 —p)M C s(Rzx) = (sR)z = (Rs)x = R(sz) =0
and so s(1 —p) € anng(M) C P, a contradiction. Therefore, Mp # 0.0

4. Ideals and submodules of multiplication modules.
In this section we will be concerned with relationships between the

ideals of a commutative ring and the submodules of a non-zero multi-
plication module over the commutative ring.
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PROPOSITION 4.1. Let R be a commutative ring and M a non-zero
multiplication module. Then the following statements hold.

(1) For every ideal I of R with M # IM, there exists a maximal
ideal P of R containing I +anngr(M) such that PM is a maximal
submodule of M.

(2) If P is a prime ideal of R containing anng(M) such that M #
PM, then P+ J = R for every ideal J of R with M = JM.

(3) For every ideal I of R with M # IM and for every ideal J of
R with M = JM, there exists a maximal ideal P of R contain-
ing I + anng(M) such that P+ J = R and PM is a maximal
submodule of M.

Proof. (1) Let I be any ideal of R with M # IM. Then by Lemma
1.1, there is a maximal submodule K of M such that /M C K. Further,
by Lemma 1.1, there is a maximal ideal P of R such that K = PM.
Since PM # M, it follows Lemma 2.6 that anng(M) C P. Suppose
that I ¢ P. Then I + P = R. Since IM C K = PM, it then follows
that

M=RM=(I+P)M CIM+ PM = PM.

Hence, M = PM. This contradiction shows that I C P. Thus, I +
annp(M) C P.

(2) Let P be any prime ideal of R containing anng(M) such that
M # PM. Let J be any ideal of R with M = JM. Then there
exists an element z € M\PM. Further, since M is a multiplication
module and M = JM, it follows from Lemma 3.1 that M is J-torsion.
Hence, there exists an element j € J such that (1 — j)z = 0. Further,
(1-4)x=0¢€ PM. By Lemma 2.4(2), PM is a prime submodule of
M. Hence, 1 — j € P. Therefore, P+ J = R.

(3) follows from (1) and (2). O

Given an ideal I of a commutative ring R, the radical of I, denoted
by V1, is defined by {r € R|r" € I for some positive integer n}. It is
well-known that if I is an ideal of a commutative ring R, then VI =
Npev(r P- We will generalize this.

THEOREM 4.2. Let R be a commutative ring. Let M be a non-zero
multiplication module. Then for every ideal I of R,

((( T+anng(M)) M) ip M) = N P

PeV(I+annp(M))( N{(M)
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Proof. Let I be any ideal of R. Assume that IM = M. Then
R = (M ‘R M) = (IM ‘R M) - ((( I-I—annR(M))M) ‘R M)

Hence, (((/T + anng(M))M) :r M) = R. Let A= V(I +anng(M)) N
N(M). Then A = (. For, otherwise there exists a prime ideal P of R
containing I + anng(M) C P and PM # M. Then

M =IM = (I +anng(M))M C PM G M,

a contradiction. Hence, ﬂpe 4 P = R. Therefore,

((( T+amng(M)) M) :r M) :pDAR

Now, assume IM # M. Then I+anng(M) # R. There exists a prime
ideal Q of R such that I + anng(M) C Q. Let P = V(I + anng(M)).
Then @Q € P. In particular, P # 0. Then it is easy to show that

(( N (PM)) ‘R M) = () (PM :g M).

PeP PepP

By Proposition 4.1(1), A # 0. Let B = V(I + anng(M)) N (Spec(R)
\N(M)). Then P = AU B. Hence, by Lemma 1.1 and Lemma 2.4(1),
we have

() )

- N (PM ‘R M)

SR NGIER)

=P O

PeA
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COROLLARY 4.3. If M is a non-zero faithfully flat multiplication
module over a commutative ring R, then for every ideal I of R,

(/7 ammm D) 1) 1 M) =V T+ st 0.

Proof. Let I be any ideal of R. Then with the same notations as in
the proof of Theorem 4.2,

VITam00 = () 2= P)N (N P):

pPeP PcA peB

If M is faithfully flat, it follows from [9, Theorem 7.2] that B = ). Hence,
by Theorem 4.2,

VI+anng(M) = (| P=(((VT+amp(M)M :p M). O

PeA

For any ideal I of R, let I°M = M and I®°M = (oo, (I"M). [6,
p.791, Lemma 3.1 (ii)] can be recast as follows.

LEMMA 4.4. Let R be a commutative ring and P an ideal of R. Let
M be an R-module such that PM is a multiplication module. Then for
any submodule N of PM, either N C P®M or there exists a positive
integer k and k ideals Io, Iy, -+, Iy~ of R with Iy £ P, I, € P?, ---,
Iy—1 € P* such that

N=LPM=5LP'M=...=1,_,PM.

Proof. Assume that N is a submodule of PM such that N ¢ P®M.
Then there exists a positive integer k& such that N C P*M but N ¢
Pk+1 M. Since for each i € {0,1,--- ,k—1}, N C P*M C P*¥~iM and
by [6, Lemma 3.1(i)] P*~*M is a multiplication module, we have, for
each i € {0,1,--- ,k — 1}, N = (N :g P**M)P*~‘M. Further, (N :x
P*=M) D anng(P*~*M) implies (N :g P*"*M) + anng(P*—*M) =
N :g P*~*M. Hence, it follows from Lemma 1.1 and the modular law
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that for each ¢ € {0,1,--- ,k — 1},

N=NnPM

= NN (P'P* M)

= ((N :gr P**M)P*'M) N (P'P*~* M)

= (((N :gr P*""M) + anng(P* " M))

N (P* 4 anng(P**M)))P*'M

(N :g PF='M) N (P! + anng(P*~'M)))P*—'M
(N :gr P*=*M) N P*) 4+ anng(P**M))P**M
(N :g PF*MYN PP M

I

I

Now, for each i € {0,1,--- ,k — 1}, let I; = (N :g P*"*M) N P%. Then
N = I,P*M = [ P*'M = ... = I,_, PM.

Further, since N ¢ P**1M weget I ¢ P, I ¢ P2, .- Iy_1 € P*, as
required. O

Let R be a commutative ring and M an R-module. The ideal (M) =
Y mem(Bm :g M) of R has proved useful in studying multiplication
modules. We generalize this ideal as follows: 0(IM) = >, (Rz g
M) for an ideal of a commutative ring R and an R-module M. It is
always true that 16(M) C 6(IM) for every ideal I of a commutative
ring R and for every module M over the ring R. If M is a multiplication
module over a commutative ring R, then for every ideal I of R,

IM = Z Rz

x€IM

= Y ((Rz:r M)M)

z€IM

- ( 3" (Re :RM))M

zeIM
= 6(IM)M

and IM = (IM :r M)M. Hence, we have the following result.
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LEMMA 4.5. Let R be a commutative ring and M a multiplication
R-module. Then the following conditions are equivalent:

(1) M is finitely generated, and
(2) for every ideal I of R, 0(IM) = (IM :g M) =1+ anng(M).

Proof. (1) = (2) follows from [10, Theorem 9 Corollary].
(2) = (1). (2) gives 8(M) = R. Hence, it follows from [3, Corollary
2.2] that M is finitely generated. a

THEOREM 4.6. Let R be a commutative ring and let P be a maximal
ideal of R. Let M be a non-zero R-module satisfying

(1) M is a finitely generated multiplication module,

(2) PM is a multiplication module, and

(3) P"M # P"*M for every positive integer n.
Then (o, (P™ + anng(M)) € V(annr(M)) = Supp(M) C N(M).

Proof. By [6, Corollary 3.2], P®°M is a prime submodule of M. By
the statement just prior to Lemma 2.6, there exists a prime ideal Q) of R
containing anng (M) with QM # M such that PPM = QM. It suffices
to prove that @ = (oo, (P" + anng(M)).

By Lemma 1.1, we have

QM = P*M = ﬁ P"M) = (ﬁ (P™ 4 anng( ))) M.
n=1 =1

Hence, by Lemma 4.5, we have

Q= (QM_H(( OP”—{-annR )))M)

ﬂ (P™ 4+ anngp(M)),

n=1

as required. 1l

Note that intersection of powers of multiplication ideals are considered
in [4, Theorem 2.2]. [4, Theorem 4.1] says: Let (R, P) be a quasi-local
ring whose maximal ideal P is finitely generated. Then R is Noetherian
if and only if for every finitely generated ideal I of R, (o, (P"+1) = 1.
Therefore, by Theorem 4.6, we have the following result.
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COROLLARY 4.7. Let R be a Noetherian local ring with unique max-
imal ideal P. Let M be a non-zero R-module satisfying

(1) M is a multiplication module,
(2) PM is a multiplication module, and
(3) P"M # Pt M for every positive integer n.

Then R /anng(M) is a discrete valuation domain.

Proof. Over a quasi-local ring a multiplication module is cyclic. So
M = R /anng(M). Now PM = P /anng(M) is principal so R /anng(M)
is a PIR. Then (3) gives that R /anng(M) is a DVR. Further, by The-
orem 4.6, R /anng(M) is an integral domain. O

Notice that if a module over a commutative ring satisfies the assump-
tions of Corollary 4.7, then it is Noetherian module but not Artinian.

COROLLARY 4.8. Let R be a Noetherian local ring with unique max-
imal ideal P satisfying

(1) P is a multiplication ideal of R and
(2) P™ # P"*! for every positive integer n.

Then R is a discrete valuation domain.
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