Acknowledgement
Supported by : Institute for Research in Fundamental Sciences (IPM)
References
- K. Bahmanpour, Annihilators of local cohomology modules, Comm. Algebra 43 (2015), no. 6, 2509-2515. https://doi.org/10.1080/00927872.2014.900687
- K. Bahmanpour, J. A'zami, and G. Ghasemi, On the annihilators of local cohomology modules, J. Algebra 363 (2012), no. 1, 8-13. https://doi.org/10.1016/j.jalgebra.2012.03.026
- K. Bahmanpour and R. Naghipour, Associated primes of local cohomology modules and Matlis duality, J. Algebra 320 (2008), no. 6, 2632-2641. https://doi.org/10.1016/j.jalgebra.2008.05.014
- M. P. Brodmann and R. Y. Sharp, Local Cohomology: an algebraic introduction with geometric applications, Cambridge University Press, Cambridge, 1998.
- K. Divaani-Aazar, R. Naghipour, and M. Tousi, Cohomological dimension of certain algebraic varieties, Proc. Amer. Math. Soc. 130 (2002), no. 12, 3537-3544. https://doi.org/10.1090/S0002-9939-02-06500-0
- G. Ghasemi, K. Bahmanpour, and J. A'zami, Upper bounds for the cohomological dimensions of finitely generated modules over a commutative Noetherian ring, Colloq. Math. 137 (2014), no. 2, 263-270. https://doi.org/10.4064/cm137-2-10
- A. Grothendieck, Local cohomology, Notes by R. Hartshorne, Lecture Notes in Math., 862, Springer, New York, 1966.
- M. Hellus, On the set of Associated primes of a local cohomology module, J. Algebra 237 (2001), no. 1, 406-419. https://doi.org/10.1006/jabr.2000.8580
- C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Camb. Phil. Soc. 110 (1991), no. 3, 421-429. https://doi.org/10.1017/S0305004100070493
- L. R. Lynch, Annihilators of top local cohomology, Comm. Algebra 40 (2012), no. 2, 542-551. https://doi.org/10.1080/00927872.2010.533223
- G. Lyubeznik, Finiteness properties of local cohomology modules (an application of D-modules to commutative algebra), Invent. Math. 113 (1993), no. 1, 41-55. https://doi.org/10.1007/BF01244301
- H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, Cambridge, UK, 1986.
- A. A. Mehrvarz, K. Bahmanpour, and R. Naghipour, Arithmetic rank, cohomological dimension and filter regular sequences, J. Algebra Appl. 8 (2009), no. 6, 855-862. https://doi.org/10.1142/S0219498809003692
- L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra 285 (2005), no. 2, 649-668. https://doi.org/10.1016/j.jalgebra.2004.08.037
- L. T. Nhan and T. N. An, On the unmixedness and universal catenaricity of local rings and local cohomology, J. Algebra 321 (2009), no. 1, 303-311. https://doi.org/10.1016/j.jalgebra.2008.09.005
- L. T. Nhan and T. D. M. Chau, On the top local cohomology modules, J. Algebra 349 (2012), 342-352. https://doi.org/10.1016/j.jalgebra.2011.08.027
- B. Sadeghi, K. Bahmanpour, and J. A'zami, Artinian cofinite modules over complete Noetherian local rings, Czechoslovak Math. J. 63(138) (2013), no. 4, 877-885. https://doi.org/10.1007/s10587-013-0059-4
- P. Schenzel, Cohomological annihilators, Math. Proc. Camb. Phil. Soc. 91 (1982), no. 3, 345-350. https://doi.org/10.1017/S0305004100059417
- P. Schenzel, Proregular sequences, local cohomology, and completion, Math. Scand. 92 (2003), no. 2, 161-180. https://doi.org/10.7146/math.scand.a-14399
- P. Schenzel, N. V. Trung, and N. T. Cuong, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978), 57-73. https://doi.org/10.1002/mana.19780850106
Cited by
- Ideal Transforms with Respect to a Pair of Ideals 2017, https://doi.org/10.1007/s40306-017-0213-4
- A note on Lynch’s conjecture vol.45, pp.6, 2017, https://doi.org/10.1080/00927872.2016.1233237