• Title/Summary/Keyword: zero dynamics

Search Result 218, Processing Time 0.032 seconds

Laser Microfabrication of Micro Actuator (레이저 미세 가공기술을 이용한 마이크로 엑츄에이터의 개발)

  • 김광열;고상철;박현기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.932-937
    • /
    • 2002
  • The polyimide nozzle and silicon restrictor inside a thermal micro actuator have been fabricated using state of the art laser micromachining methods. Numerical models of fluid dynamics inside the actuator chamber and nozzle are presented. The models include fluid flow from reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of refill through restrictor. Since high tapered nozzle and restrictor are very important parameters for overall actuator performance design, a special setup for the beam delivery system has been developed. The effects of variations of nozzle thickness, diameter, taper angles, and restrictor shapes are simulated and some results are compared with the experimental results. It is fecund that the fluid ejection through the thinner and high tapered nozzle is more steady, fast, and robust and the tapered restrictor shows more satisfying refill than the zero taper one.

  • PDF

A Robust PID control using SMC (SMC를 이용한 PMSM의 강인한 PID 제어)

  • Joo, Hyeong-Yeol;Park, Seung-Kyu;Kwak, Gun-Pyong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1735_1736
    • /
    • 2009
  • This paper discusses about a robust servo system applying PID control to PMSM. The system has robustness by Sliding Mode Controller. A novel sliding surface is defined by virtual state. This sliding surface has nominal dynamics of an original PID control system. So Sliding Mode Control(SMC) technique can be used with PID controller. Its design is based on the augmented system whose dynamics have a higher order than that of the original system. The reaching phase is removed by using an initial virtual state whitch makes the initial sliding function equal to zero.

  • PDF

DYNAMICS OF OPEN II-RAYS (META PHYSICS) AND CLOSED II-RAYS

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.39-46
    • /
    • 2000
  • The imploded open $\pi$-rays comprise of the space and their diameters are distributed from nearly zero to infinite. The change of the potential energy in the open $\pi$-ray produces an attraction force between them and it is sensible to the geometric shape factor and its frequency. The equivalent principle of general relativity means that in the wave equation its velocity of the force wave is infinite. The change of the state in a open $\pi$-ray(or any force wave) can be transferred to any sensible open $\pi$-ray via space at a finite velocity. Many properties of the light wave can be deduce from the motions of open $\pi$-rays.The nonsteady and steady Schr dinger equations include the dynamics of open $\pi$-rays and closed $\pi$-rays.$\prod$-ray is a tool of entity for constructing physics and metaphysics at the same time.

  • PDF

Novel sliding mode controller with virtual state (가상의 상태를 이용한 새로운 슬라이딩 모드 제어기)

  • Park, Seung-Kyu;Ahn, Ho-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.505-510
    • /
    • 1999
  • In this paper, a novel sliding surface is proposed by defining a novel virtual state. This sliding surface has nominal dynamics of an original system and makes it possible that the sliding mode control(SMC) technique is used with the various types of controllers. Its design is based on the augmented system whose dynamics have a higher order than that of the original system. The reaching phase is removed by using an initial virtual state which makes the initial sliding function equal to zero.

  • PDF

Design of Single-input Direct Adaptive Fuzzy Logic Controller Based on Stable Error Dynamics

  • Park, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.44-49
    • /
    • 2001
  • For minimum phase systems, the conventional fuzzy logic controllers (FLCs) use the error and the change-of-error as fuzzy input variables. Then the control rule table is a skew symmetric type, that is, it has UNLP (Upper Negative and Lower Positive) or UPLN property. This property allowed to design a single-input FLC (SFLC) that has many advantages. But its control parameters are not automatically adjusted to the situation of the controlled plant. That is, the adaptability is still deficient. We here design a single-input direct adaptive FLC (SDAFLC). In the AFLC, some parameters of the membership functions characterizing the linguistic terms of the fuzzy rules are adjusted by an adaptive law. The SDAFLC is designed by a stable error dynamics. We prove that its closed-loop system is globally stable in the sense that all signals involved are bounded and its tracking error converges to zero asymptotically. We perform computer simulations using a nonlinear plant and compare the control performance between the SFLC and the SDAFLC.

  • PDF

Novel Discrete-Time Sliding Mode Control (이산치 계통에 대한 새로운 슬라이딩 모드 제어)

  • Park, Seung-Kyu;An, Ho-Gyun;Kim, Kyung-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.903-905
    • /
    • 1999
  • In this paper, a novel sliding surface is proposed by defining a novel virtual state. This sliding surface has nominal dynamics of an original system and makes it possible that the Discrete-Time Sliding Mode Control(DSMC) technique is used with the various types of controllers. Its design Is based on the augmented system whose dynamics have a higher order than that of the original system. The reaching phase is removed by using an initial virtual state which makes the initial sliding function equal to zero.

  • PDF

Noble Discrete Sliding Mode Control for Discrete Nonlinear System (비선형 계통에 대한 새로운 이산치 슬라이딩 모드제어)

  • Park, Seung-Kyu;Lee, Jae-Dong;Kwak, Gun-Pyung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.912-914
    • /
    • 1999
  • In this paper, the feedback linearization technique is used with the sliding mode control for discrete nonlinear systems. This combination of the two control techniques is achieved by Proposing a novel sliding surface which has the nominal dynamics of the original system controlled by feedback linearization technique. Its design is based on the augmented system whose dynamics have a higher order than that of the original system. The reaching Phase is removed by using an initial virtual state which makes the initial sliding function equal to zero.

  • PDF

A Study on the $H_{\infty}$ Controller of the Novel Sliding Mode - State Space Approach (새로운 슬라이딩 모드를 이용한 $H_{\infty}$ 제어기의 설계 - 상태공간 접근방법)

  • Kim, Min-Chan;Park, Seung-Kyu;Kwak, Gun-Pyong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.915-917
    • /
    • 1999
  • In this paper, a novel sliding surface is proposed by introducing a virtual state. This sliding surface has nominal dynamics of an original system and makes it possible that the Sliding Mode Control(SMC) technique is combined with the $H_{\infty}$ controller. Its design is based on the augument system whose dynamics have one higher order than that of the original system. The reaching phase is removed by setting an initial virtual state which makes the initial switching function equal to zero.

  • PDF

The Novel Sliding Mode Controller for Discrete-time System with Multi-Input (다중입력 이산치계통에 대한 새로운 슬라이딩 모드 제어기의 설계)

  • Park, Seung-Kyu;Jin, Mi-Jung;Ahn, Ho-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.906-908
    • /
    • 1999
  • In this paper, new sliding mode surfaces are proposed by defining novel virtual states. These sliding surfaces have nominal dynamics of an original system and makes it possible that the Sliding Mode Control(SMC) technique is used with the various types of controllers. Its design is based on the augmented system whose dynamics have m-th higher order than those of the original system where m is the number of inputs. The reaching phase is removed by setting the initial virtual states which makes the initial switching functions equal to zero.

  • PDF

Kinematic Modeling and Inverse Dynamic Analysis of the IWR Biped Walking Robot (이족보행로봇 IWR의 기구학적 모델링과 역동역학 해석)

  • 김진석;박인규;김진걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.561-565
    • /
    • 2000
  • This paper deals with dynamic walking and inverse dynamic analysis of the IWR biped walking robot. The system has nine bodies of the multibody dynamics. and all of the .joints of them are made up of the revolute joints at first. The problem of redundant constraint in double support phase is solved by changing the type of the joints considering kinematic relation. To make sure of its dynamic walking, the movement of balancing weight is determined by which satisfies not only the condition of ZMP by applying the principle of D'Alembert but also the contact condition of the ground. The modeling of IWR and dynamic walking are realized using DADS.

  • PDF