• Title/Summary/Keyword: yellow poplar (Liriodendron tulipifera)

Search Result 44, Processing Time 0.026 seconds

Effects of in vitro culture types on regeneration and acclimatization of yellow poplar (Liriodendron tulipifera L.) from somatic embryos

  • An, Chan Hoon;Kim, Yong Wook;Moon, Heung Kyu;Yi, Jae Seon
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.110-118
    • /
    • 2016
  • We compared germination efficiency for somatic embryos (SE) of Liriodendron tulipifera using semi-solid (SS), temporary immersion bioreactors (TIB), and continuous immersion bioreactors (CIB) to produce vigorous plants. The bioreactors were designed to be immersed in liquid media with plantlets with an adjustable immersion time. TIB and CIB improved germination rates up to 80.86% and 95.21%, respectively, however, CIB produced more hyperhydric plantlets than TIB. The height of plantlets in TIB was significantly higher than for those in CIB. Fresh weights of plantlets grown in CIB of were significantly lower than for those grown in TIB. The lowest chlorophyll concentration was found in in vitro plantlets from CIB. We examined abnormally developed leaves, stems, and apical zones of in vitro plantlets that were produced in CIB. Among the three types, SS showed the highest stomatal density and the shortest stomatal length in in vitro plantlets. After acclimatization, plants from CIB exhibited the lowest values in biomass, such as height, root collar diameter, leaf fresh weight, leaf length, leaf width, petiole length, petiole diameter, and leaf area. Photosynthesis and transpiration rates of ex vitro plants were not significantly different among the three culture types, but stomatal conductance was higher in TIB than in the SS and CIB. Therefore, the results suggest that TIB is the preferable bioreactor to improve in vitro plantlet regeneration of L. tulipifera. TIB-originated plants showed higher growth rate than SS and CIB after transferring to soil.

Analysis of Chemical Compositions and Energy Contents of Different Parts of Yellow Poplar for Development of Bioenergy Technology

  • Myeong, Soo-Jeong;Han, Sim-Hee;Shin, Soo-Jeong
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.706-710
    • /
    • 2010
  • Understanding of chemical composition and energy contents in tree is important to develope strategies of renewable energy policy to cope with climate change. Residual biomass as renewable energy source was evaluated and focused on the bark-containing branches. Chemical analysis studies were conducted for different part of yellow poplar (Liriodendron tulipifera), which were partitioned to inner bark, outer bark, small branches, medium branches, big branches and trunk. The variations in hydrophobic extractives, hydrophilic extractives, lignin, carbohydrate compositions, energy contents (higher heating value) and the ash content were determined. The inner and outer bark had higher ash content, hydrophobic and hydrophilic extractives content, and higher energy content than those of tree trunk. Polysaccharides content in inner and outer bark was quite lower than those of stem or branches. Based on the energy content of residual biomass, replacement of fossil fuel and greenhouse gas emission abatement were calculated.

Comparison of Pollination Efficiency on Different Pollination Methods in Yellow poplar (Liriodendron tulipifera) (백합나무의 인공교배 방법에 따른 교배 효율성 비교)

  • Ryu, Keun-Ok;Kwon, Hae-Yun;Choi, Hyung-Soon;Kim, In-Sik;Cho, Do-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.696-702
    • /
    • 2009
  • Yellow poplar (Liriodendron tulipifera L.) is an insect-pollinated tree species with large, perfect flower, and its seed sets average only about 10 percent naturally. In its controlled pollination, pollination bags are usually taken to prevent unwanted pollination, but bagging is an expensive and time-consuming process. Therefore, this study was conducted to determine the need of pollination bag by estimating how much unintended pollination would occur when different cross methods were applied. Five different pollination methods were applied as follows: 1) natural open pollination (i.e. insect pollination) as a reference, 2) self-pollination; no removing reproductive organs with bagging, 3) open pollination; emasculated(removing sepal, petal and stamen) without bagging, 4) controlled pollination; emasculated with bagging and 5) controlled pollination; emasculated without bagging. Very low value of full seed rate (0.2%) was observed in method 3, it was suggested that removing stamen and petal restrict the activity of pollen vectors like bee. Difference in the full seed rate between method 4 and method 5 was not significant (27.9% versus 24.0%, respectively). Consequently, controlled pollination without bagging might be an alternative method for extensive breeding and mass production of seeds in yellow poplar.

Feasibility of Domestic Yellow Poplar (Liriodendron tulipifera) Dimension Lumber for Structural Uses (국산 백합나무 구조용 제재목의 이용가능성 평가)

  • Lim, Jin-Ah;Oh, Jung-Kwon;Yeo, Hwan-Myeong;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.470-479
    • /
    • 2010
  • In this study, the visual grading based on the visual characteristics and structural timber bending test were conducted for domestic yellow poplar dimension lumber. Structural performance of domestic yellow poplar dimension lumber was conducted through the evaluation of strength and stiffness. Visual grading rule of yellow poplar dimension lumber did not exist in Korea. Visual grading of yellow poplar dimension lumber was performed according to the NSLB (Northern Softwood Lumber Bureau) standard grading rules including several hardwood dimension lumber. The allowable bending stress was calculated from the results of a visual grading. Compared with NDS (National Design Specification), the yellow poplar dimension lumber showed enough strength for structural uses. In addition, the visual grading was performed according to the KFRI (Korea Forest Research Institute) grading rule to calculated allowable bending stress and to evaluated the feasibility. The yellow poplar was classified into the pine groups by the KFRI criteria regulated by specific gravity. Allowable bending stress based on weibull distribution had became highly than KFRI criteria, as No. 1 (10.0 MPa), No. 2 (7.4 MPa) and No. 3 (4.1 MPa). And the availability of yellow poplar dimension lumber for structural uses had been confirmed. The Modulus of Elasticity (MOE) of domestic yellow poplar dimension lumber had not met the NDS and KFRI criteria. However, for the use of domestic yellow poplar, average values of MOE which obtained through this test were suggested as design value for domestic yellow poplar. Design values were supposed No. 1, 2 (9,000 MPa) and No. 3 (8,000 MPa).

Growth Responses of two Tree Species Exposed to Simulated Acidic Rain and Ozone (산성비와 오존에 대한 두 수종의 생장반응)

  • Lee, Woong-Sang
    • The Korean Journal of Ecology
    • /
    • v.17 no.2
    • /
    • pp.131-141
    • /
    • 1994
  • One-year-old yellow-poplar (Liriodendron tulipifera L.) and sweetgum (Liquidambar styraciflua L.) seedlings were exposed to 0.10 ${\mu}l/l\;O_3$and simulated acid rain at pH 3.0 for ten consecutive weeks. Shoot height growth (SHG), fresh weight (FWT), dry weight (DWT), apparent plastochron duration (APD) and foliar nutrient concentrations were measured. None of growth measurements, except the apparent plastochron duration (APD), were significantly affected by any treatment in yellow-poplar seedlings. APD was approximately 30% higher in seedlings exposed to $0.1{\mu}l/l\;O_3$ + pH 5.6 solution than any other treatment. Ozone significantly reduced SHG of sweetgum seedlings by 24% at the end of the ten-week fumigation. There were also significant effects of single and combined effects of ozone and simulated acid rain on APD in sweetgum. APD was significantly increased by 19.8% and 25.7% in seedlings exposed to $0.1{\mu}l/l\;O_3$ and pH 5.6 solution, respectively, and resulted in 46.1% higher APD in seedlings exposed to $0.1{\mu}l/l\;O_3$ + pH 5.6 solution compared with seedlings exposed to $0.0{\mu}l/l\;O_3$ + pH 3.0 solution. Phosphorus and sulphur were significantly greater in seedlings exposed to simulated rain at pH 3.0 compared with pH 5.6 for both species. Foliar S concentration was higher in seedlings exposed to $0.0{\mu}l/l\;O_3$ + pH 3.0 than in seedlings exposed to any other treatment in sweetgum. Ozone significantly increased Ca in sweetgum seedlings, however, ozone reduced Ca in yellow-poplar. Ozone also reduced S and Mg in sweetgum seedlings.

  • PDF

Effect of Treatment Amounts of Slurry Composting and Biofiltration Liquid Fertilizer on Growth Characteristics and Bioethanol Production of Yellow Poplar (SCB액비 처리량에 따른 백합나무의 생장 및 바이오에탄올 생산)

  • Kim, Ho-Yong;Gwak, Ki-Seob;Kim, Hye-Yun;Ryu, Keun-Ok;Kim, Pan-Gi;Cho, Do-Hyun;Choi, Jin-Yong;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.459-468
    • /
    • 2011
  • The main purpose of this study was to examine the influence of treatment amounts of Slurry Composting and Biofiltration liquid fertilizer (SCBLF) on biomass growth of Yellow poplar (Liriodendron tulipifera) and to compare bioethanol production from the harvested wood. Relative growth rate, biomass production and leaf characteristics were significantly enhanced by SCBLF treatment and medium treatment plot showed highest value. Nitrogen compounds and water content in SCBLF affected to increase chlorophyll contents which led improving biomass production (64.67%) and glucose contents (6.07%) than control. Organosolv and dilute acid pretreatments were preliminarily carried for bioethanol production, and the pretreatment processes were conducted at all the same solid to liquid ratio (1 : 10), reaction temperature ($150^{\circ}C$), preheating time (40 min) and residence time (10 min). The water insoluble solid recovery of Organosolv pretreatment with 1% sulfuric acid as a catalyst was the lowest and that of medium treatment plot was 44.81%. Exchangeable cations in SCBLF might be affected to increase pretreatment effect. The simultaneous saccharification and fermentation process was followed to determine the ethanol production of the pretreated biomass. The highest ethanol production yield based on initial weight was obtained from high treatment plotby Organosolv pretreatment with 1% sulfuric acid (16.11%). But regarding biomass production, medium treatment plot produced most, and bioethanol production was increased by 72.93% than control.

Quality of Yellow Poplar (Liriodendron tulipifera) Seedlings by the Method of Seedling Production (백합나무 양묘방법에 따른 묘목품질 비교)

  • Ryu, Keun-Ok;Song, Jeong-Ho;Choi, Hyung-Soon;Kwon, Hae-Yun;Kwon, Yong-Rak
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.307-316
    • /
    • 2007
  • Yellow poplar (Liriodendron tulipifera L.) has low germination rate relatively other species, so the seedling production of Yellow poplar is a hard task. Accordingly this study was conducted to determine the optimal germination conditions for healthy seedling production and to promote survival rate after afforestation. Gemination percentage was examined at different media and seed covering materials using planting flats in the greenhouse. The best germination percentage was observed in sand for media and compound soil for covering materials. But it was time to transplant, seedlings became a poor character (i.e. height, root length, number of root, dry weight) in sand for media. In order to produce healthy seedlings, each different medium was compounded with TKS-2 (this is a gardening bed soil.) in the ratio 1:1 (v/v.), and compared two conditions. Quality of seedling was better than not mixed TKS-2 into each medium. Transplanting seedlings from greenhouse to nursery grew up rapidly 2 months later (early in August~early in October). Growth amount during two months corresponded to 85.6% and 71.3% in total growth amount of height and diameter at root collar, respectively. In the case of the competition-density effect on yellow-poplar seedlings, direct seedling produced the maximum 35 standard seedlings above 8 mm of root collar diameter per $m^2$, while transplanting seedling produced the maximum 64 standard seedlings per $m^2$. And produced seedlings of two way were significantly different rootlet while axial root and lateral root was not significantly different.

Effect of Mother Trees and Dark Culture Condition Affecting on Somatic Embryogenesis of Liriodendron tulipifera L. (백합나무(Liriodendron tulipifera L.) 체세포배(體細胞胚) 발생(發生)에 미치는 모수(母樹) 및 암배양(暗培養) 효과(效果))

  • Son, Seog-Gu;Moon, Heung-Kyu;Kim, Yong-Wook;Kim, Ji-Ah
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.1 s.158
    • /
    • pp.39-44
    • /
    • 2005
  • An effective micropropagation system for Liriodendron tulipifera L via somatic embryogenesis was established using immature seeds. Immature seeds from five individual trees were bisected longitudinally and cultured on two basal media (MS and B5) containing different combinations of 2,4-D and TDZ to induce callus and embryogenic tissue under light ($40{\mu}mol\;m^{-2}s^{-1}$, 16 hr/day) or complete darkness at $25{\pm}2^{\circ}C$. There was no distinctive difference on callus and embryogenic tissue induction between the two basal media with PGRs. Optimum culture medium appeared to be MS medium supplemented with 1.0mg/L 2,4-D and 0.01mg/L TDZ plus 3% sucrose. Nonembryogenic callus induction rate was not significantly different among the genotypes. However, However, the embryogenic callus induction frequency differed greatly by the genotypes ranging from 55% to 72% when cultured in the dark. Generally, the cultures maintained in the dark tended to show normal somatic embryo development as well as embryogenic tissue formation and this was confirmed by histological examination. Above results suggest that a proper selection of mother tree and dark culture condition are necessary to optimize somatic embryogenesis system of Liriodendron tulipifera.

Physical and Mechanical Properties of Heat-treated Domestic Yellow Poplar (백합나무 열처리재의 물리 및 역학적 특성)

  • Kim, Kwang-Mo;Park, Jung-Hwan;Park, Byoung-Soo;Son, Dong-Won;Park, Joo-Saeng;Kim, Wun-Sub;Kim, Byoung-Nam;Shim, Sang-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.17-26
    • /
    • 2010
  • Recently, yellow poplar (Liriodendron tulipifera L.) is getting attention in Korea due to the fast growing and high yield and quality of lumber. But, it is thought that the color difference between heartwood and sapwood may restrict the practical use of it. This study was aimed to enhance the value of yellow poplar lumber by the color control using high temperature heat-treatment, which had been tried for domestic cedar (Kim et al., 2009). The material properties including surface color of yellow poplar lumber were evaluated according to heat treatment conditions. The difference of color between sapwood and heartwood could be reduced by heat treatment at a temperature about $200^{\circ}C$. Long heating time was more effective in reducing the difference. The Equilibrium Moisture Content (EMC) of heat-treated wood was as low as 50 percent of the control. The result obviously indicates that heat-treated wood is more dimensionally stable in the change of moisture condition. The durability against wood rotting fungi also increased by the heat-treated, but it was not so effective as the case of cedar. The changes of mechanical properties of heat-treated yellow poplar were very similar to that of heat-treated cedar. In order to develop new use of heat-treated yellow poplar, the changes of mechanical properties should be considered. There were no significant changes in microscopic structure which may cause changes in mechanical properties. Further study of heat-treated wood is needed to scrutinize the causes of changes of material properties.

Characterization of Pyrolytic Lignin in Biooil Produced with Yellow Poplar (Liriodendron tulipifera) (백합나무 바이오오일에서 회수한 열분해리그닌(Pyrolytic Lignin)의 화학적 특성)

  • Kim, Kwang-Ho;Moon, Sun-Joo;Kim, Tai-Seung;Lee, Soo-Min;Yeo, Hwan-Myeong;Choi, In-Gyu;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.86-94
    • /
    • 2011
  • Pyrolytic lignin was obtained from biooil produced with yellow poplar wood. Fast pyrolysis was performed under various temperature ranges and residence times using fluidized bed type reactor. Several analytical methods were adopted to characterize the structure of pyrolytic lignin as well as the effect of pyrolysis temperature and residence time on the modification of the lignin. The yield of pyrolytic lignin increased as increasing pyrolysis temperature and decreasing residence time of pyrolysis products. The molecular weight of pyrolytic lignin determined by gel permeation chromatography (GPC) was approximately 1,200 mol/g, which was approximately a tenth of milled wood lignin (MWL) purified from the same woody biomass. Based on analytical data, demethoxylation and side chain cleavage reaction were dominantly occurred during fast pyrolysis.