Effect of Mother Trees and Dark Culture Condition Affecting on Somatic Embryogenesis of Liriodendron tulipifera L.

백합나무(Liriodendron tulipifera L.) 체세포배(體細胞胚) 발생(發生)에 미치는 모수(母樹) 및 암배양(暗培養) 효과(效果)

  • Son, Seog-Gu (Warm-temperature Forest Research Center, Korea Forest Research Institute) ;
  • Moon, Heung-Kyu (Div. Biothechnology, Korea Forest Research Institute) ;
  • Kim, Yong-Wook (Div. Biothechnology, Korea Forest Research Institute) ;
  • Kim, Ji-Ah (Div. Biothechnology, Korea Forest Research Institute)
  • 손석규 (국립산림과학원 난대산림연구소) ;
  • 문흥규 (국립산림과학원 생물공학과) ;
  • 김용욱 (국립산림과학원 생물공학과) ;
  • 김지아 (국립산림과학원 생물공학과)
  • Received : 2005.01.11
  • Accepted : 2005.02.21
  • Published : 2005.03.31

Abstract

An effective micropropagation system for Liriodendron tulipifera L via somatic embryogenesis was established using immature seeds. Immature seeds from five individual trees were bisected longitudinally and cultured on two basal media (MS and B5) containing different combinations of 2,4-D and TDZ to induce callus and embryogenic tissue under light ($40{\mu}mol\;m^{-2}s^{-1}$, 16 hr/day) or complete darkness at $25{\pm}2^{\circ}C$. There was no distinctive difference on callus and embryogenic tissue induction between the two basal media with PGRs. Optimum culture medium appeared to be MS medium supplemented with 1.0mg/L 2,4-D and 0.01mg/L TDZ plus 3% sucrose. Nonembryogenic callus induction rate was not significantly different among the genotypes. However, However, the embryogenic callus induction frequency differed greatly by the genotypes ranging from 55% to 72% when cultured in the dark. Generally, the cultures maintained in the dark tended to show normal somatic embryo development as well as embryogenic tissue formation and this was confirmed by histological examination. Above results suggest that a proper selection of mother tree and dark culture condition are necessary to optimize somatic embryogenesis system of Liriodendron tulipifera.

5본의 백합나무 모수로부터 미숙종자 배양을 통한 체세포 배발생을 시험하였다. 두 가지 배지(MS 및 B5)에 2,4-D 및 TDZ의 농도별 조합처리로 캘러스 및 배발생 조직 유도를 시험하고 체세포배 유도, 발달 및 재분화에 미치는 명 암배양의 효과를 조사하였다. 캘러스 및 배발생 조직의 유도는 두 배지간 유의적인 차이가 없었으나 MS + 2,4-D 1.0 mg/L, TDZ 0.01 mg/L, 3% sucrose 조건에서 양호하게 나타났다. 캘러스 유도는 모수 몇 명 암배양에 따른 차이가 없었으나 배발생 조직의 유도는 암배양이 주효하여 명배양보다 약 2배의 효과가 있었고 모수간 55~72%까지 차이를 나타냈다. 체세포배 유도 및 정상적인 체세포배의 발달에 있어서도 모수의 영향을 받으며, 암배양이 필수적인 것으로 나타났고, 해부학적인 관찰을 통해 확인할 수 있었다. 본 실험 결과는 백합나무 체세포배 유도에 있어 모수의 선택과 암배양이 중요한 요인임을 시사해 준다.

Keywords

References

  1. Aparna, P. and S.L. Kothari. 2003. Direct somatic embryogenesis and plant regeneration from leaf cultures of ornamental species of Dianthus. Sci. Horticult. 98 : 449-459 https://doi.org/10.1016/S0304-4238(03)00078-5
  2. Beck, D.E. 1990. In silvics of north America II, Hardwoods. p.406-416. Russell M.B. and Barbara H.H. (eds) USDA, Agriculture Handbook No. 654. Washington, DC. U.S.A.
  3. Das, D.K., M. Reddy, K. Upadhyaya, and S. Sopory. 2002. An efficient leaf-disc culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.). Plant Cell Rep. 20 : 999-1005 https://doi.org/10.1007/s00299-002-0441-4
  4. Dodeman, V.L., Ducreux, G. and Kreis, M. 1997. Zygotic embryogenesis versus somatic embryogenesis. J. Exp. Bot. 48: 1493-1509
  5. Fuentes, S.R.L, M.B.P Calheiros, J. Manetti-Filho and L.G.E. Vieira. 2000. The effects of silver nitrate and different carbohydrate sources on somatic embryogenesis in Coiffea canephora. Plant Cell. Tiss. Org. Cult. 60 : 5-13 https://doi.org/10.1023/A:1006474324652
  6. Gamborg, O.L., R.A. Miller, and K. Ojima. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151-158 https://doi.org/10.1016/0014-4827(68)90403-5
  7. Halperin, W. 1966. Alternative morphogenetic events in cell suspensions. Am. J. Bot. 53: 443-453 https://doi.org/10.2307/2440343
  8. Han, J.Y. and Y.E. Choi. 2003. Mass production of Eleutherococcus senticosus plants through in-vitro cell culture. Kor. J. Plant Biotechnol. 30: 167-172 https://doi.org/10.5010/JPB.2003.30.2.167
  9. Kintzios, S., J.B. Drossopoulos, E. Shortsianitis and D. Peppes. 2000. Induction of somatic embryogenesis from young, fully expanded leaves of chilli pepper (Capsicum annuun L.): effect of leaf position, illumination and explant pretreatment with high cytokinin concentrations. Sci. Horticult. 85: 137-144 https://doi.org/10.1016/S0304-4238(99)00135-1
  10. Lee, J.S., H.K. Moon and Y.W. Kim. 2003. Mass propagation of Liriodendron tulipifera L. Kor. J. Plant Biotechnol. 30: 359-363 https://doi.org/10.5010/JPB.2003.30.4.359
  11. Merkle, S.A. and H.E. Sommer. 1986. Somatic embryogenesis in tissue cultures of Liriodendron tulipifera L. Can. J. For. Res. 16: 420-422 https://doi.org/10.1139/x86-077
  12. Merkle, S.A., R.J. Salak, A.T. Wieeko and H.E. Sommer. 1990. Maturation and conversion of Liriodendron tulipifera somatic embryos. In Vitro Cell. Dev. Biol. 26: 1086-1093 https://doi.org/10.1007/BF02624445
  13. Merkle, S.A. 1991. Maturation of yellow-poplar somatic embryos. M.R. Ahuja (ed). Woody Plant Biotech. Plenum Press, New York. p. 179-187
  14. Merkle, S.A., MT Hoey, B.A. Watson-Pauley, and S.E. Schlar-baum. 1993. Propagation of Liriodendron hyhrids via somatic embryogenesis. Plant Cell Tiss. Org. Cult. 34: 191-198 https://doi.org/10.1007/BF00036101
  15. Merkle, S.A., and B.A. Watson-Pauley. 1994. Ex vitro conversion of pyramid magnolia somatic embryos. Hort. Sci. 29: 1186-1188
  16. Merkle, S.A. 1995. Strategies for dealing with limitations of somatic embryogenesis in hardwood trees. Plant Tiss. Cult. Biotechnol. 1: 112-121
  17. Merkle, S.A. and F.D. Jeffrey. 2000. Current opinion in biotechnology, Forest Tree Biotechnol. 11 : 298-302
  18. Moon, H.K., Y.P. Hong, Y.W. Kim and J.S. Lee. 2001. Genotype effect on somatic embryogenesis and plant regeneration of 15 Aralia data. J. Kor. For. Soc. 28: 129-134
  19. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant. 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  20. Nickle, T.C. and E.C. Yeung. 1994. Further evidence of a role for abscisic acid in conversion of somatic embryos of Daucus carota. In Vitro Cell. Dev. Biol. 30: 96-103 https://doi.org/10.1007/BF02632136
  21. Onay, A. 2000. Histology of somatic emhryogenesis in cultured leaf explants of pistachio (Pistacia vera L). Turk. J. Bot. 24: 9l-95
  22. Pena, L. and A. Seguin. 2001. Recent advances in the genetic transformation of trees. Trends in Biotechnol. 19: 500-506 https://doi.org/10.1016/S0167-7799(01)01815-7
  23. Ramesar-Fortner, N.S. and E.C. Yeung. 2001. Tri-iodobenzoic acid affects shoot apical meristem formation and function in zygotic embryos of Brassica napus cv. Topas. Can. J. Bot. 79: 265-273 https://doi.org/10.1139/cjb-79-3-265
  24. Ryu, K.O. 2003. Adaptability of Liriodendron tulipifera Linne in Korea and techniques for producing its seedlings. PhD thesis, Chunghuk National University, Cheongju, Korea. pp 90
  25. Ryu, K.O. and H.E. Kim. 2003. Development of techniques and handling for seedling production of yellow-poplar (Liriodendron tulipifera Linno). J. Kor. For. Soc. 92: 236-245
  26. Sotak, R.J., H.E. Sommer, and S.A. Merkle. 1991. Relation of the developmental stage of zygotic embryos of yellow-poplar to their somatic embryogenic potential. Plant Cell Rep. 10: 175-178
  27. Stasolla, C., L. van Zyl, U. Egertsdotter, D. Craig, W. Liu and R. Sederoff. 2003. Transcript profiles of stress-related genes in developing white spruce (Picea glauca) somatic embryos cultured with polyethylene glycol. Plant Sci. 165: 719-729 https://doi.org/10.1016/S0168-9452(03)00228-0
  28. Tarre. E., C. Magioli, M. Margis-Pinheiro, G. Sachetto-Martins, E. Mansur and L. Santiago-Femandes. 2004. In vitro somatic embryogenesis and adventitious root initiation have a common origin in eggplant (Solanum melongena L.). Revista Brasil. Bot. 27 : 79-84 https://doi.org/10.1590/S0100-84042004000100010
  29. Tremblay, L. and F.M. Tremblay. 1991. Effects of gelling agents, ammonium nitrate, and light on the development of Picea mariana (Mill) B.S.P. (black spruce) and Picea rubens Sarg. (red spruce) somatic embryos. Plant Sci. 77(2) : 233-242 https://doi.org/10.1016/0168-9452(91)90092-M
  30. Vendrame, W.A., C.P. Holliday, P.M. Montello, D.R. Smith and S.A. Merkle. 2001. Cryopreservation of yellow-poplar (Liriodendron tulipifera) and sweetgum (Liquidambar spp.) embryogenic cultures. New For. 21 : 283-292 https://doi.org/10.1023/A:1012237606373
  31. Yeung. E.C. 1999. The use of histology in the study of plant tissue culture system-some practical comments. In Vitro Cell Dev. Biol. Plant 35: 137-143 https://doi.org/10.1007/s11627-999-0023-z
  32. Zimmerman, L.J. 1993. Somatic embryogenesis: a model for early development in higher plants. The Plant Cell 5: 1411-1423 https://doi.org/10.2307/3869792