DOI QR코드

DOI QR Code

Effect of Treatment Amounts of Slurry Composting and Biofiltration Liquid Fertilizer on Growth Characteristics and Bioethanol Production of Yellow Poplar

SCB액비 처리량에 따른 백합나무의 생장 및 바이오에탄올 생산

  • Kim, Ho-Yong (Department of Forest Sciences, Seoul National University) ;
  • Gwak, Ki-Seob (Department of Forest Sciences, Seoul National University) ;
  • Kim, Hye-Yun (Department of Forest Sciences, Seoul National University) ;
  • Ryu, Keun-Ok (Korea Forest Research Institute) ;
  • Kim, Pan-Gi (Department of Forest Resources and Environment, Kyungpook National University) ;
  • Cho, Do-Hyun (Korea Forest Research Institute) ;
  • Choi, Jin-Yong (Department of Landscape Architecture and Rural System Engineering, Seoul National University) ;
  • Choi, In-Gyu (Department of Forest Sciences, Seoul National University)
  • 김호용 (서울대학교 농업생명과학대학 산림과학부) ;
  • 곽기섭 (서울대학교 농업생명과학대학 산림과학부) ;
  • 김혜연 (서울대학교 농업생명과학대학 산림과학부) ;
  • 유근옥 (국립산림과학원 산림자원육성부) ;
  • 김판기 (경북대학교 생태환경대학 생태환경시스템학부) ;
  • 조도현 (국립산림과학원 산림자원육성부) ;
  • 최진용 (서울대학교 농업생명과학대학 조경.지역시스템공학부) ;
  • 최인규 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2011.07.28
  • Accepted : 2011.08.18
  • Published : 2011.11.25

Abstract

The main purpose of this study was to examine the influence of treatment amounts of Slurry Composting and Biofiltration liquid fertilizer (SCBLF) on biomass growth of Yellow poplar (Liriodendron tulipifera) and to compare bioethanol production from the harvested wood. Relative growth rate, biomass production and leaf characteristics were significantly enhanced by SCBLF treatment and medium treatment plot showed highest value. Nitrogen compounds and water content in SCBLF affected to increase chlorophyll contents which led improving biomass production (64.67%) and glucose contents (6.07%) than control. Organosolv and dilute acid pretreatments were preliminarily carried for bioethanol production, and the pretreatment processes were conducted at all the same solid to liquid ratio (1 : 10), reaction temperature ($150^{\circ}C$), preheating time (40 min) and residence time (10 min). The water insoluble solid recovery of Organosolv pretreatment with 1% sulfuric acid as a catalyst was the lowest and that of medium treatment plot was 44.81%. Exchangeable cations in SCBLF might be affected to increase pretreatment effect. The simultaneous saccharification and fermentation process was followed to determine the ethanol production of the pretreated biomass. The highest ethanol production yield based on initial weight was obtained from high treatment plotby Organosolv pretreatment with 1% sulfuric acid (16.11%). But regarding biomass production, medium treatment plot produced most, and bioethanol production was increased by 72.93% than control.

SCB액비 처리가 백합나무의 생장에 미치는 영향을 조사하고 수확된 백합나무를 원료로 한 바이오에탄올 생산량 비교를 위하여, 처리량별로 처리구를 설정하고 상대 생장량, 바이오매스 생장량, 엽특성 및 구성당과 에탄올 생산량을 각각 분석하였다. SCB액비 처리를 통해 백합나무의 바이오매스 생장량(64.67 %) 및 Glucose 함량(6.07 %)이 증가하였고 이는 SCB액비에 함유된 양료 성분과 수분 함량이 엽록소 생산에 영향을 끼쳤기 때문으로 사료된다. 바이오에탄올 생산에 앞서 SCB액비 처리되어 생장한 백합나무를 유기용매 전처리 및 약산 전처리를 하였으며 반응 온도($150^{\circ}C$), 승온 시간(40분), 반응 시간(10분)은 모두 동일하게 진행하였다. 전처리 효율은 중 처리구를 유기용매 전처리(w/1% 황산) 하였을 때 잔여율이 44.81%로 가장 높았으며, 치환성 양이온이 전처리 효과를 증진시킨 것으로 보인다. 전처리 된 시료를 동시당화발효하여 바이오에탄올을 생산하였으며 초기 투입량 대비 가장 높은 에탄올 생산 수율은 대 처리구에서 얻을 수 있었으나(16.11%), 바이오매스 생산량을 고려하면 중 처리구의 에탄올 생산량이 가장 많았으며, 대조구 대비 72.93% 증가하였다.

Keywords

References

  1. Bak, J. H. and K. J. Lee. 2001. Effects of Nitrogen and phosphorus Fertilization on the Growth, Carbohydrate Contents and photosynthesis of Pinus densiflora Seedlings Exposed to Ozone in an Open-Top Chamber. Journal of Korean Forest Society 90(3): 306-313.
  2. Bilodeau-Gauthier, S., D. Houle, C. Gagnon, B. Cote, and C. Messier. 2010. Assessment of sugar maple tree growth in relation to the partitioning of elements in xylem along a soil acidity gradient. Forest Ecology and Management.
  3. Emmel, A., A. L. Mathias, F. Wypych, and L. P. Ramos. 2003. Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion. Bioresource Technology 86(2): 105-115. https://doi.org/10.1016/S0960-8524(02)00165-7
  4. Fulton, L., T. Howes, and J. Hardy. 2004. Biofuels for transport: an international perspective. OECD, International Energy Agency.
  5. Gray, K. A., L. Zhao, and M. Emptage. 2006. Bioethanol. Current Opinion in Chemical Biology 10(2): 141-146. https://doi.org/10.1016/j.cbpa.2006.02.035
  6. Hamelinck, C., G. Hooijdonk, and A. Faaij. 2005. Ethanol from lignocellulosic biomass: technoeconomic performance in short-, middle-and long-term. Biomass and Bioenergy 28(4): 384-410. https://doi.org/10.1016/j.biombioe.2004.09.002
  7. Lim, T. J., S. D. Hong, S. H. Kim, and J. M. Park. 2008. Evaluation of Yield and Quality from Red Pepper for Application Rates of Pig Slurry Composting Biofiltration. Korean Journal of Environmental Agriculture 27(2): 171-177. https://doi.org/10.5338/KJEA.2008.27.2.171
  8. Liu, Y., S. Carriero, K. Pye, and D. S. Argyropoulos. 2000. A comparison of the structural changes occurring in lignin during Alcell and kraft pulping of hardwoods and softwoods. American Chemical Society, USA, Washington DC.
  9. Lu, X., Y. Zhang, and I. Angelidaki. 2009. Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: Focusing on pretreatment at high solids content. Bioresource technology 100(12): 3048-3053. https://doi.org/10.1016/j.biortech.2009.01.008
  10. Newton, P. F. 2003. Stem analysis program for coniferous forest tree species. Computers and Electronics in Agriculture 39(1): 61-66. https://doi.org/10.1016/S0168-1699(03)00004-8
  11. Park, J. H., J. K. Yeo, Y. B. Koo, W. W. Lee, H. C. Kim, and C. H. Park. 2008. Effects of Slurry Composting and Biofiltration Liquid Fertilizer on Growth Characteristic of Poplar Clones in a Reclaimed Land Mounding Soil. Korean Journal of Soil Science and Fertilizer 41(5): 318-323.
  12. Park, N., H. Kim, B. Koo, H. Yeo, and I. Choi. 2010. Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine (Pinus rigida). Bioresource technology 101: 7046-7053. https://doi.org/10.1016/j.biortech.2010.04.020
  13. Rocha, M., T. Rodrigues, G. de Macedo, and L. Goncalves. 2009. Enzymatic Hydrolysis and Fermentation of Pretreated Cashew Apple Bagasse with Alkali and Diluted Sulfuric Acid for Bioethanol Production. Applied biochemistry and biotechnology 155(1): 104-114. https://doi.org/10.1007/s12010-008-8432-8
  14. Saddler, J. N., L. P. Ramos, and C. Breuil. 1993. Bioconversion of Forest and Agricultural Plant Wastes. CAB International, London, UK, 73-92.
  15. Saha, B., L. Iten, M. Cotta, and Y. Wu. 2005. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochemistry 40(12): 3693-3700. https://doi.org/10.1016/j.procbio.2005.04.006
  16. Sanchez, O. and C. Cardona. 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource technology 99(13): 5270-5295. https://doi.org/10.1016/j.biortech.2007.11.013
  17. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker. 2004. Determination of structural carbohydrates and lignin in biomass. NREL, Golden, CO.
  18. Wellburn, A. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Plant Physiology 144: 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2
  19. Wyman, C. E., B. E. Dale, R. T. Elander. M. Holtzapple, M. R. Ladisch, and Y. Y. Lee. 2005. Coordinated development of leading biomass pretreatment technologies. Bioresource technology 96(18): 1959-1966. https://doi.org/10.1016/j.biortech.2005.01.010

Cited by

  1. Utilization of Compost Bed for the Treatment of Anaerobic Digestion Wastewater vol.20, pp.2, 2014, https://doi.org/10.11109/JAES.2014.20.2.69
  2. Inhibition of in Vitro Growth of Three Soil-borne Turfgrass Diseases by Antagonistic Bacteria from Composted Liquid Manure vol.32, pp.6, 2014, https://doi.org/10.7235/hort.2014.14085
  3. Influence of the Composted Liquid Manure on the Turf Growth of Zoysiagrass (Zoysiagrass japonica) and Soil Properties vol.3, pp.4, 2014, https://doi.org/10.5660/WTS.2014.3.4.347
  4. Reduction of Pollutant Load by Small Pond in a Rice Paddy Applied with Pig Manure Compost vol.22, pp.4, 2014, https://doi.org/10.17137/Korrae.2014.22.4.021
  5. Optimum Application Amount, Timing, and Frequency of Slurry Composted and Biofiltered Liquid Fertilizer for Zoysia japonica 'Millock' vol.30, pp.6, 2012, https://doi.org/10.7235/hort.2012.12099
  6. Carbon dioxide absorption for Liriodendron tulipifera using fertilization vol.59, pp.4, 2016, https://doi.org/10.1007/s13765-016-0201-8
  7. A Study on Filtration Effect of Anaerobic Digestion Wastewater by Composition of Filtration Layer Materials vol.19, pp.1, 2013, https://doi.org/10.11109/JAES.2013.19.1.039
  8. Effect of Aeration on Fertilization and Sludge Accumulation of Pig Slurry vol.19, pp.1, 2013, https://doi.org/10.11109/JAES.2013.19.1.047
  9. Impact Assessment of Liquid Manure Application on Soil and Shallow Groundwater in Poplar Experimental Site vol.57, pp.1, 2015, https://doi.org/10.5389/KSAE.2015.57.1.025
  10. Organosolv Pretreatment of Slurry Composting and Biofiltration of Liquid Fertilizer-Treated Yellow Poplar for Sugar Production vol.43, pp.5, 2015, https://doi.org/10.5658/WOOD.2015.43.5.578