DOI QR코드

DOI QR Code

Ceriporia sp. ZLY-2010 in Biodegradation of Polychlorinated Biphenyls : Extracellular Enzymes Production and Effects of Cytochrome P450 Monooxygenase

Ceriporia sp. ZLY-2010에 의한 폴리염화비페닐류의 생분해 : 균체 외 효소활성 및 cytochrome P450 monooxygenase 영향

  • Hong, Chang-Young (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Gwak, Ki-Seob (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Su-Yeon (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Seon-Hong (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Jeong, Han-Seob (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, In-Gyu (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • 홍창영 (서울대학교 농업생명과학대학 산림과학부) ;
  • 곽기섭 (서울대학교 농업생명과학대학 산림과학부) ;
  • 이수연 (서울대학교 농업생명과학대학 산림과학부) ;
  • 김선홍 (서울대학교 농업생명과학대학 산림과학부) ;
  • 정한섭 (서울대학교 농업생명과학대학 산림과학부) ;
  • 최인규 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2011.07.29
  • Accepted : 2011.08.25
  • Published : 2011.11.25

Abstract

In this study, to determine the ligninase activity related to the PCBs degradation of Ceriporia sp. ZLY-2010, the protein contents and manganese peroxidase (MnP) and laccase activities during cultivation on shallow stationary culture (SSC) medium were observed. 4 PCB congeners were selected depending on the number of chlorine substituted on biphenyl. Furthermore, to examine the effects of cytochrome P450 monooxygenase, the inhibition of cytochrome P450 monooxygenase was evaluated by measuring the biodegradation rate when inhibitor such as 1-aminobenzotriazole was added. The extracellular protein contents were affected by PCB congeners in culture media. The total protein in the culture medium showed the biggest differences between the samples containing 2,2',4,4',5,5'-hexachlorobiphenyl and the control. On the other hand, MnP and laccase activity showed dominant increases within samples containing 4,4'-dichlorobiphenyl and 2,3',4',5-tetrachlorobiphenyl. Cytochrome P450 monooxygenase was inhibited by adding inhibitor, 1-aminobenzotriazole in low concentration. Only 2.73% of 2,3',4',5-tetrachlorobiphenyl was degraed on day 1, and biodegradation of 2,2',4,4',5,5'-hexachlorobiphenyl was inhibited as well, showing about 20% of biodegradation rate.

본 연구에서는 Ceriporia sp. ZLY-2010을 이용하여 폴리염화비페닐류의 생분해와 효소 시스템간의 상관관계에 대해 알아보고자 하였다. 폴리염화비페닐 동족체 첨가에 따라 단백질 정량 및 manganese peroxidase (MnP)와 laccase의 활성을 비교하였으며, cytochrome P450 monooxygenase의 저해 정도를 평가함으로써 균체 내 효소가 폴리염화비페닐의 생분해에 끼치는 영향을 구명하였다. 단백질 정량 및 균체 외 효소 활성을 측정해 본 결과, 대조구에 비해 폴리염화비페닐 동족체를 첨가한 실험구에서 단백질 농도 및 효소활성이 더 높게 측정되었다. 단백질 농도의 경우, 2,2',4,4',5,5'-hexachlorobiphenyl을 첨가했을 때, 가장 높은 단백질 농도가 측정되었다. 하지만 MnP와 laccase 활성에서는 상대적으로 염소원자가 적게 치환된 2,3',4',5-tetrachlorobiphenyl을 첨가한 실험구에서 높게 나타나는 경향을 보였다. Cytochrome P450 monooxygenase의 저해 정도를 평가한 결과, 2,3',4',5-tetrachlorobiphenyl을 첨가한 실험구의 경우, 배양 1일째, 저해제 1-aminobenzotriazole 0.1 mM에서 2.73%의 분해율을 나타냈으며, 저해제 첨가 시 생분해율이 크게 감소하는 것으로 나타났다. 2,2',4,4',5,5'-hexachlorobiphenyl 역시, 저해제의 존재 하에 20% 내외의 분해율을 보였으며, 이는 대조구에 비해 약 40% 감소한 비율이다.

Keywords

References

  1. 이상훈, 서봉국. 2005. 잔류성 유기오염물질 Polychlorinated Biphenyls(PCBs) 분해 처리 기술 현황. 청정기술 11(1): 29-39.
  2. 장판식, 노봉수, 유상호, 김묘정, 김영완. 2010. 제6장 효소의 생산, 추출 및 정제. in: 이해하기 쉬운 식품효소공학, 수학사. 서울. pp. 208-212
  3. 홍창영, 곽기섭, 이수연, 김선홍, 최인규. 2010. 폴리염화비페닐류의 생분해 우수 백색부후균 선발 및 분해율 분석. 목재공학 38(6): 586-578. https://doi.org/10.5658/WOOD.2010.38.6.568
  4. Bedard, D., R. Wagner, M. Brennan, M. Haberl, and J. Brown Jr. 1987. Extensive degradation of Aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850. Applied and Environmental Microbiology 53(5): 1094-1102.
  5. Bezalel, L., Y. Hadar, P. P. Fu, J. P. Freeman, and C. E. Cerniglia. 1996. Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Applied and Environmental Microbiology 62(7): 2547-2553.
  6. Borja, J., D. Taleon, J. Auresenia, and S. Gallardo. 2005. Polychlorinated biphenyls and their biodegradation. Process Biochemistry 40(6): 1999-2013. https://doi.org/10.1016/j.procbio.2004.08.006
  7. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72(1-2): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  8. Claes von Wachenfeldt and E. F. Johnson. 1995. Structures of eudaryotic Cytochrmon P450 enzymes. in: Cytochrome P450-structure, Mechanism, and Biochemistry, (Ed.) Ortiz de Montellano, P.R, 1986 Plenum Press. New York, pp. 183-213.
  9. Cabanne, F., D. Huby, P. Gaillardon, R. Scalla, and F. Durst. 1987. Effect of the cytochrome P-450 inactivator 1-aminobenzotriazole on the metabolism of chlortoluron andisoproturon in wheat* 1. Pesticide Biochemistry and Physiology 28(3): 371-380. https://doi.org/10.1016/0048-3575(87)90133-7
  10. Eriksson K. E. and B. R. Ander P. 1990. Chapter 4. Biodegradation of lignin. in: Microbial and Enzymatic degradation of wood and wood components, Springer-Verlag Berlin, pp. 225-397.
  11. Groves, J. T. 2005. Models and Mechanisms of Cytochrome P450 Action. in: Cytochrome P450: structure, mechanism, and biochemistry, (Ed.) P.R.O.d. Montellano, Kluwer Academic/Plenum Publishers. New York, pp. 1-15.
  12. Hatakka, A. 1994. Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation. FEMS Microbiology Reviews 13(2-3): 125-135. https://doi.org/10.1111/j.1574-6976.1994.tb00039.x
  13. Hofrichter, M. 2002. Review: lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial technology 30(4): 454-466. https://doi.org/10.1016/S0141-0229(01)00528-2
  14. Hong, C. Y. 2011a. Biodegradation of polychlorinated biphenyls by white rot fungus, Ceriporia sp. ZLY-2010. in: Department of forest sciences, Vol. Master Science Thesis, Seoul National University. Seoul, pp. 56-61.
  15. Hong, C. Y. 2011b. Biodegradation of polychlorinated biphenyls by white rot fungus, Ceriporia sp. ZLY-2010. in: Department of forest sciences, Vol. Master Science, Seoul National University. Seoul, pp. 44-55.
  16. Huynh, V. B. and R. L. Crawford. 1985. Novel extracellular enzymes (ligninases) of Phanerochaete chrysosporium. FEMS microbiology letters 28(1): 119-123. https://doi.org/10.1111/j.1574-6968.1985.tb00776.x
  17. Kamei, I. and R. Kondo. 2005. Biotransformation of dichloro-, trichloro-, and tetrachlorodibenzo-p dioxin by the white-rot fungus Phlebia lindtneri. Applied microbiology and biotechnology 68(4): 560-566. https://doi.org/10.1007/s00253-005-1947-9
  18. Kamei, I., S. Sonoki, K. Haraguchi, and R. Kondo. 2006. Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus, Phlebia brevispora. Applied microbiology and biotechnology 73(4): 932-940. https://doi.org/10.1007/s00253-006-0529-9
  19. Keyser, P., T. Kirk, and J. Zeikus. 1978. Ligninolytic enzyme system of Phanaerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. Journal of bacteriology 135(3): 790-797.
  20. Kotze, A. 1997. Cytochrome P450 monooxygenase activity in Haemonchus contortus (Nematoda). International journal for parasitology 27(1): 33-40. https://doi.org/10.1016/S0020-7519(96)00161-0
  21. Krcmar, P., A. Kubatova, J. Votruba, P. Erbanova, Novotn, and V. Sasek. 1999. Degradation of polychlorinated biphenyls by extracellular enzymes of Phanerochaete chrysosporium produced in a perforated plate bioreactor. World Journal of Microbiology and Biotechnology 15(2): 269-276. https://doi.org/10.1023/A:1008994912875
  22. Lee, S. M. 2005. Biodegradation of Dibutyl and Di (2-ethylhexyl) Phthalates by White Rot Fungus, Polyporus brumalis. in: Department of forest sciences, Vol. Ph.D. Thesis, Seoul National University. Seoul.
  23. Lee, S. M., J. W. Lee, B. W. Koo, M. K. Kim, D. H. Choi, and I. G. Choi. 2007. Dibutyl phthalate biodegradation by the white rot fungus, Polyporus brumalis. Biotechnology and bioengineering 97(6): 1516-1522. https://doi.org/10.1002/bit.21333
  24. Masaphy, S., D. Levanon, Y. Henis, K. Venkateswarlu, and S. Kelly. 1995. Microsomal and cytosolic cytochrome P450 mediated benzo (a) pyrene hydroxylation in Pleurotus pulmonarius. Biotechnology letters 17(9): 969-974. https://doi.org/10.1007/BF00127436
  25. Masaphy, S., D. Levanon, Y. Henis, K. Venkateswarlu, and S. L. Kelly. 1996. Evidence for cytochrome P 450 and P 450 mediated benzo (a) pyrene hydroxylation in the white rot fungus Phanerochaete chrysosporium. FEMS microbiology letters 135(1): 51-55. https://doi.org/10.1111/j.1574-6968.1996.tb07965.x
  26. Mori, T. and R. Kondo. 2002. Oxidation of dibenzo-p-dioxin, dibenzofuran, biphenyl, and diphenyl ether by the white-rot fungus Phlebia lindtneri. Applied microbiology and biotechnology 60(1): 200-205. https://doi.org/10.1007/s00253-002-1090-9
  27. Novotny, C., K. Svobodova, P. Erbanova, T. Cajthaml, A. Kasinath, E. Lang., and V. Sasek. 2004. Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biology and Biochemistry 36(10): 1545-1551. https://doi.org/10.1016/j.soilbio.2004.07.019
  28. Ortiz de Montellano, P. R., J. M. Mathews, and K. C. Langry. 1984. Autocatalytic inactivation of cytochrome P-450 and chloroperoxidase by 1-aminobenzotriazole and other aryne precursors. Tetrahedron 40(3): 511-519. https://doi.org/10.1016/0040-4020(84)85056-5
  29. Pointing, S. 2001. Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology 57(1): 20-33. https://doi.org/10.1007/s002530100745
  30. Quensen III, J. F., S. A. Boyd, and J. M. Tiedje. 1990. Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Applied and Environmental Microbiology 56(8): 2360-2369.
  31. Ruiz-Aguilar, G. M. L., J. M. Fernandez-Sanchez, R. Rodriguez-Vazquez, and H. Poggi-Varaldo. 2002. Degradation by white-rot fungi of high concentrations of PCB extracted from a contaminated soil. Advances in Environmental Research 6(4): 559-568. https://doi.org/10.1016/S1093-0191(01)00102-2
  32. Schmidt, O. 2006. Wood cell wall degradation. in: Wood and Tree fungi, (Ed.) D. Czeschlik, Springer-Verlag Berlin. Heidelberg, pp. 99-107.
  33. Sjostrom, E. 1992. ch 4. Lignin. in: Wood chemistry : fundamentals and applications. Harcourt Brace Jovanovich. London, pp. 71-89.
  34. Tien, M. 1987. Properties of ligninase from Phanerochaete chrysosporium and their possible applications. Critical reviews in microbiology 15(2): 141-168. https://doi.org/10.3109/10408418709104456
  35. Tien, M. and T. K. Kirk. 1984. Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique $H_2O_2$-requiring oxygenase. Proceedings of the National Academy of Sciences of the United States of America 81(8): 2280-2284. https://doi.org/10.1073/pnas.81.8.2280
  36. Valli, K., H. Wariishi, and M. H. Gold. 1992. Degrada-tion of 2, 7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Journal of bacteriology 174(7): 2131-2137. https://doi.org/10.1128/jb.174.7.2131-2137.1992
  37. Yadav, J., J. Quensen 3rd, J. M. Tiedje, and C. Reddy. 1995. Degradation of polychlorinated biphenyl mixtures (Aroclors 1242, 1254, and 1260) by the white rot fungus Phanerochaete chrysosporium as evidenced by congener-specific analysis. Applied and Environmental Microbiology 61(7): 2560-2565.

Cited by

  1. Optimization of γ-Aminobutyric Acid (GABA) Production Using Immobilized Lactobacillus plantarum K154 in Submerged Culture of Ceriporia lacerata vol.47, pp.4, 2015, https://doi.org/10.9721/KJFST.2015.47.4.438
  2. Biodegradation of PCB congeners by white rot fungus,Ceriporiasp. ZLY-2010, and analysis of metabolites vol.47, pp.12, 2012, https://doi.org/10.1080/03601234.2012.676432