• 제목/요약/키워드: weakly symmetric manifold

검색결과 9건 처리시간 0.018초

ON GENERALIZED WEAKLY SEMI-CONFORMALLY SYMMETRIC MANIFOLDS

  • Hui, Shyamal Kumar;Patra, Akshoy;Patra, Ananta
    • 대한수학회논문집
    • /
    • 제36권4호
    • /
    • pp.771-782
    • /
    • 2021
  • In this paper we introduce generalized weakly semi-conformally symmetric manifold, a generalization of weakly symmetric manifold. We study some basic properties and obtain the forms of the scalar curvature of such manifold. In the last section an example is given to ensure the existence of such manifold.

Some Symmetric Properties on (LCS)n-manifolds

  • Venkatesha, Venkatesha;Naveen Kumar, Rahuthanahalli Thimmegowda
    • Kyungpook Mathematical Journal
    • /
    • 제55권1호
    • /
    • pp.149-156
    • /
    • 2015
  • We analyze the $(LCS)_n$-manifolds endowed with some symmetric properties, focusing on Ricci tensor and the 1-form ${\gamma}$. We study some properties of special Weakly Ricci-Symmetric $(LCS)_n$-manifolds and also shown that Weakly ${\phi}$-Ricci Symmetric $(LCS)_n$-manifold is an ${\eta}$-Einstein manifold.

ON WEAKLY CYCLIC GENERALIZED B-SYMMETRIC MANIFOLDS

  • Mohabbat Ali;Aziz Ullah Khan;Quddus Khan;Mohd Vasiulla
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1271-1280
    • /
    • 2023
  • The object of the present paper is to introduce a type of non-flat Riemannian manifold, called a weakly cyclic generalized B-symmetric manifold (W CGBS)n. We obtain a sufficient condition for a weakly cyclic generalized B-symmetric manifold to be a generalized quasi Einstein manifold. Next we consider conformally flat weakly cyclic generalized B-symmetric manifolds. Then we study Einstein (W CGBS)n (n > 2). Finally, it is shown that the semi-symmetry and Weyl semi-symmetry are equivalent in such a manifold.

NOTES ON WEAKLY CYCLIC Z-SYMMETRIC MANIFOLDS

  • Kim, Jaeman
    • 대한수학회보
    • /
    • 제55권1호
    • /
    • pp.227-237
    • /
    • 2018
  • In this paper, we study some geometric structures of a weakly cyclic Z-symmetric manifold (briefly, $[W CZS]_n$). More precisely, we prove that a conformally flat $[W CZS]_n$ satisfying certain conditions is special conformally flat and hence the manifold can be isometrically immersed in an Euclidean manifold $E^n+1$ as a hypersurface if the manifold is simply connected. Also we show that there exists a $[W CZS]_4$ with one parameter family of its associated 1-forms.

A TYPE OF WEAKLY SYMMETRIC STRUCTURE ON A RIEMANNIAN MANIFOLD

  • Kim, Jaeman
    • Korean Journal of Mathematics
    • /
    • 제30권1호
    • /
    • pp.61-66
    • /
    • 2022
  • A new type of Riemannian manifold called semirecurrent manifold has been defined and some of its geometric properties are studied. Among others we show that the scalar curvature of semirecurrent manifold is constant and hence semirecurrent manifold is also concircularly recurrent. In addition, we show that the associated 1-form (resp. the associated vector field) of semirecurrent manifold is closed (resp. an eigenvector of its Ricci tensor). Furthermore, we prove that if a Riemannian product manifold is semirecurrent, then either one decomposition manifold is locally symmetric or the other decomposition manifold is a space of constant curvature.

INVARIANT SUBMANIFOLDS OF (LCS)n-MANIFOLDS ADMITTING CERTAIN CONDITIONS

  • Eyasmin, Sabina;Baishya, Kanak Kanti
    • 호남수학학술지
    • /
    • 제42권4호
    • /
    • pp.829-841
    • /
    • 2020
  • The object of the present paper is to study the invariant submanifolds of (LCS)n-manifolds. We study generalized quasi-conformally semi-parallel and 2-semiparallel invariant submanifolds of (LCS)n-manifolds and showed their existence by a non-trivial example. Among other it is shown that an invariant submanifold of a (LCS)n-manifold is totally geodesic if the second fundamental form is any one of (i) symmetric, (ii) recurrent, (iii) pseudo symmetric, (iv) almost pseudo symmetric and (v) weakly pseudo symmetric.