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A TYPE OF WEAKLY SYMMETRIC STRUCTURE ON A

RIEMANNIAN MANIFOLD

Jaeman Kim

Abstract. A new type of Riemannian manifold called semirecurrent manifold has
been defined and some of its geometric properties are studied. Among others we
show that the scalar curvature of semirecurrent manifold is constant and hence
semirecurrent manifold is also concircularly recurrent. In addition, we show that
the associated 1-form (resp. the associated vector field) of semirecurrent manifold
is closed (resp. an eigenvector of its Ricci tensor). Furthermore, we prove that
if a Riemannian product manifold is semirecurrent, then either one decomposition
manifold is locally symmetric or the other decomposition manifold is a space of
constant curvature.

1. Introduction

As a natural generalization of the notion of a space of constant curvature, the notion
of a symmetric manifold was introduced by Cartan [5] who obtained a classification
of such a manifold. The study on generalization of a symmetric manifold started
in 1946 and continued to date in different directions. For instance the notions of
recurrent manifold, conformally recurrent manifold, concircularly recurrent manifold
and conharmonically recurrent manifold were introduced by Ruse [10] and Walker [11];
Adati and Miyazawa [1]; Maralabhavi and Rathnamma [8]; De, singh and Pandey [7],
respectively. A Riemannian manifold (Mn, g) is said to be recurrent if its curvature
tensor R satisfies the following relation

(1) (∇XR)(Y, Z, U, V ) = A(X)R(Y, Z, U, V )

for any nonzero 1-form A, where∇ denotes the Levi-Civita connection and X, Y, Z, U, V ∈
TMn.
Conformal curvature tensor C, concircular curvature tensor C1 and conharmonic cur-
vature tensor C2 are defined as follows:

C(X, Y, Z, U) = R(X, Y, Z, U)− 1

n− 2
[Ric(Y, Z)g(X,U)−Ric(X,Z)g(Y, U)+g(Y, Z)

(2)

Ric(X,U)− g(X,Z)Ric(Y, U)] +
s

(n− 1)(n− 2)
[g(Y, Z)g(X,U)− g(X,Z)g(Y, U)],
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(3) C1(X, Y, Z, U) = R(X, Y, Z, U)− s

n(n− 1)
[g(Y, Z)g(X,U)− g(X,Z)g(Y, U)]

and

C2(X, Y, Z, U) = R(X, Y, Z, U)− 1

n− 2
[Ric(Y, Z)g(X,U)

(4) −Ric(X,Z)g(Y, U) + g(Y, Z)Ric(X,U)− g(X,Z)Ric(Y, U)],

where Ric and s are the Ricci tensor and the scalar curvature tensor, respectively. A
Riemannian manifold is said to be conformally recurrent, concircularly recurrent and
conharmonically recurrent if

(5) (∇XH)(Y, Z, U, V ) = A(X)H(Y, Z, U, V ),

where A is a nonzero 1-form and H stands for C, C1 and C2 respectively.
It is easy to see that if (Mn, g) is recurrent, then the manifold is conformally recur-
rent, concircularly recurrent and conharmonically recurrent. In this paper, a type of
Riemannian manifold (namely, semirecurrent manifold) is introduced. More precisely,
a Riemannian manifold (Mn, g) is said to be semirecurrent if its curvature tensor R
and concircular curvature C1 fulfill the following condition:

(6) (∇XR)(Y, Z, U, V ) = A(X)C1(Y, Z, U, V ),

for a nonzero 1-form A.
The purpose of this paper is to examine the various relationships that exist between
semirecurrent manifold and the several recurrent manifolds mentioned in the above.

2. Some properties of semirecurrent manifold

First of all, the existence of semirecurrent manifold is ensured by a proper example
as follows:

Example 2.1. Let (Mn, gc) be a space of constant curvature. Then its curvature
tensor R can be expressed as

R(X, Y, Z, U) =
s

n(n− 1)
[g(X,U)g(Y, Z)− g(X,Z)g(Y, U)].

Hence it follows from (3) and the last relation that the concircular curvature tensor
C1 vanishes. On the other hand, it is well known [3] that a space of constant curvature
is Einstein, and hence its scalar curvature is constant. Therefore by virtue of the last
relation, the curvature tensor R is covariantly constant, that is, ∇R = 0, which yields

(∇XR)(Y, Z, U, V ) = A(X)C1(Y, Z, U, V ).

Summing up the result above mentioned, we can conclude that the manifold is semire-
current.

Concerning the scalar curvature of semirecurrent manifold, we have

Theorem 2.2. Let (Mn, g) be a semirecurrent manifold. Then its scalar curvature
is constant.
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Proof. Contracting (6) on Y and V , and then contracting the relation obtained
thus on Z and U , we obtain

∇Xs = 0,

showing that the scalar curvature s is constant. This completes the proof.

Concerning the associated 1-form A in (6), we get

Theorem 2.3. Let (Mn, g) be a semirecurrent manifold. Then either the manifold
is a space of constant curvature or the associated 1-form A in (6) is closed.

Proof. From (3), (6) and Theorem 2.2, it follows that

(∇X∇YR)(Z,U, V,W )− (∇Y∇XR)(Z,U, V,W )

(7) = dA(X, Y )C1(Z,U, V,W ).

By virtue of (7), Walker’s Lemma 1 [11], namely

(∇X∇YR)(Z,U, V,W )− (∇Y∇XR)(Z,U, V,W )

+(∇V∇WR)(X, Y, Z, U)− (∇W∇VR)(X, Y, Z, U)

+(∇Z∇UR)(V,W,X, Y )− (∇U∇ZR)(V,W,X, Y ) = 0

reduces to
(8)
dA(X, Y )C1(Z,U, V,W ) + dA(V,W )C1(X, Y, Z, U) + dA(Z,U)C1(V,W,X, Y ) = 0.

Since

C1(X, Y, Z, U) = C1(Z,U,X, Y ),

it follows from Walker’s Lemma 2 [11] and (8) that either dA = 0 or C1 = 0, showing
that either the associated 1-form A in (6) is closed or the manifold is a space of
constant curvature. This completes the proof.

As an immediate consequence of Theorem 2.3, we obtain

Corollary 2.4. Let (Mn, g) be a semirecurrent manifold with non closed 1-form
A in (6). Then the manifold is a space of constant curvature.

Theorem 2.5. Let (Mn, g) be a semirecurrent manifold. Then the vector field A]

defined by g(X,A]) = A(X) is an eigenvector of Ricci tensor Ric corresponding to
eigenvalue s

n
,i.e., Ric(X,A]) = s

n
g(X,A]).
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Proof. From the second Bianchi identity and (6), it follows that

(9) A(X)C1(Y, Z, U, V ) + A(Y )C1(Z,X,U, V ) + A(Z)C1(X, Y, U, V )) = 0.

Contracting (9) on Z and V , and then contracting the relation obtained thus on Y
and U , we have

2[Ric(X,A])− s

n
g(X,A])] = 0,

showing that the associated vector field A] is an eigenvector of Ricci tensor Ric cor-
responding to eigenvalue s

n
. This completes the proof.

Let (Mn, g) be a Riemannian product manifold (Mp ×Mn−p, ĝ + g̃). In local coor-
dinates, we adopt the Latin indices (resp. the Greek indices) for tensor components
which are constructed on (Mp, ĝ) (resp. (Mn−p, g̃)). Therefore, the Latin indices take
the values from 1, ..., p whereas the Greek indices run over the range p+ 1, ..., n. Now
we can state the following.

Theorem 2.6. Let a Riemannian product manifold (Mp ×Mn−p, ĝ + g̃) be a semire-
current manifold. Then either one decomposition manifold (Mp, ĝ) is locally symmet-
ric or the other decomposition manifold (Mn−p, g̃) is a space of constant curvature.

Proof. Since any tensor components of R and its covariant derivatives with both
Latin and Greek indices together should be zero, we have from (6)

0 = Rαβγδ;p = ApC1αβγδ,

which leads to either

(10) Ap = 0

or

(11) C1αβγδ = 0.

Here semicolon ”;” indicates covariant differentiation.
In case of Ap = 0, we have from (6)

Rijkl;p = 0,

showing that the manifold (Mp, ĝ) is locally symmetric.
On the other hand, if we assume that Ap 6= 0, then we have from (3) and (11)

(12) Rαβγδ =
s

n(n− 1)
(gβγgαδ − gαγgβδ),

showing that the manifold (Mn−p, g̃) is a space of constant curvature. Therefore either
one decomposition manifold (Mp, ĝ) is locally symmetric or the other decomposition
manifold (Mn−p, g̃) is a space of constant curvature. This completes the proof.
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3. Relationships between semirecurrent manifolds and various recurrent
manifolds

First, as a consequence of Theorem 2.2 we have

Lemma 3.1. Let (Mn, g) be a semirecurrent manifold. Then the manifold is a
concircularly recurrent manifold with the same recurrence form.

Proof. Since the scalar curvature of semirecurrent manifold is constant, we have
from (3)

(13) (∇XC1)(Y, Z, U, V ) = (∇XR)(Y, Z, U, V ).

Therefore it follows from (6) and (13) that

(14) (∇XC1)(Y, Z, U, V ) = A(X)C1(Y, Z, U, V ),

showing that the manifold is concircularly recurrent with the same recurrent 1-form.
This completes the proof.

Now we can state the following.

Theorem 3.2. Let (Mn, g) be a semirecurrent manifold. Then the manifold is
conformally recurrent with the same recurrence form if and only if the manifold is
conharmonically recurrent with the same recurrence form.

Proof. It is well known [9] that every concircularly recurrent manifold is a recurrent
manifold with the same recurrence form. Since the relation

(15) C(X, Y, Z, U) = C2(X, Y, Z, U) +
n

(n− 2)
[R(X, Y, Z, U)− C1(X, Y, Z, U)]

holds, it follows from (14), (15) and Lemma 3.1 that a semirecurrent manifold is
conformally recurrent with the same recurrence form if and only if the manifold is
conharmonically recurrent with the same recurrence form. This completes the proof.

A Riemannian manifold (Mn, g) is said to be Einstein [3] if its Ricci tensor Ric is
proportional to the metric tensor g, i.e.,

(16) Ric(X, Y ) =
s

n
g(X, Y ).

On the other hand, a Riemannian manifold (Mn, g) is said to be an Einstein and
semirecurrent manifold if the manifold is both Einstein and semirecurrent. Concerning
an Einstein and semirecurrent manifold, we obtain

Theorem 3.3. Let (Mn, g) be an Einstein and semirecurrent manifold. Then the
manifold is a conharmonically recurrent manifold with the same recurrence form.
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Proof. Taking account of (2), (3) and (16), it is easy to see that a conformal cur-
vature tensor C is equal to a concircular curvature tensor C1, i.e.,

(17) C(X, Y, Z, U) = C1(X, Y, Z, U).

Since every concircularly recurrent manifold is recurrent with the same recurrence
form [9], it follows from (15), (17) and Lemma 3.1 that the manifold is conharmonically
recurrent with the same recurrent 1-form.

As an immediate consequence of Theorem 3.2 and Theorem 3.3, we get

Theorem 3.4. Let (Mn, g) be an Einstein and semirecurrent manifold. Then the
manifold is a conformally recurrent manifold with the same recurrence form.
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