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INVARIANT SUBMANIFOLDS OF (LCS)n-MANIFOLDS

ADMITTING CERTAIN CONDITIONS

Sabina Eyasmin∗ and Kanak Kanti Baishya

Abstract. The object of the present paper is to study the invariant
submanifolds of (LCS)n-manifolds. We study generalized quasi-
conformally semi-parallel and 2-semiparallel invariant submanifolds
of (LCS)n-manifolds and showed their existence by a non-trivial ex-
ample. Among other it is shown that an invariant submanifold of a
(LCS)n-manifold is totally geodesic if the second fundamental form
is any one of (i) symmetric, (ii) recurrent, (iii) pseudo symmetric,
(iv) almost pseudo symmetric and (v) weakly pseudo symmetric.

1. Introduction

The notion of Lorentzian concircular structure manifold (briefly
(LCS)n -manifold) was introduced by Shaikh [24] and proved its exis-
tence by several examples (see [25]) and later studied by many authors.
For details, we refer [3], [4], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [22], [23], [27], [28], [29], [30], [31], [32], [33] and also the references
therein. Recently, Mantica and Molinari [20] showed that a (LCS)n
-manifold (n > 3) is equivalent to the generalized Robertson-Walker
spacetime. Also the present authors [6] investigated the applications of
(LCS)n-manifolds in general theory of relativity and cosmology.

In the context of N(k, µ)-contact metric manifolds, the notion of
generalized quasi-conformal curvature tensor was introduced in [5] and
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defined on an n-dimensional manifold M as

ω(X,Y )Z =
n− 2

n
[(1 + (n− 1)a− b)−{1 + (n− 1)(a+ b)}c]

×C(X,Y )Z

+[1−b+ (n− 1)a]E(X,Y )Z + (n− 1)(b− a)P (X,Y )Z

+
n− 2

n
(c− 1){1 + 2n(a+ b)}L(X,Y )Z(1)

for all vector fields X,Y, Z on M and a, b, c ∈ R, where E, P , L, C
are concircular curvature tensor, projective curvature tensor, conhar-
monic curvature tensor, conformal curvature tensor respectively. This
tensor can also be taken as a special case of generalized tensor defined
by Shailkh and Kundu [34].
Throughout the paper such tensor field will be named as ω-tensor and
by M (resp. M̄) as the (LCS)n-manifold (n > 2) (resp. submanifold of
M). In particular, if
(i) a = 0, b = 0, c = 0, then ω turns into Riemann curvaure tensor R,
(ii) a = − 1

n−2 , b = − 1
n−2 , c = 1, then ω turns into conformal curvaure

tensor C,
(iii) a = − 1

n−2 , b = − 1
n−2 , c = 0 then ω turns into conharmonic curvaure

tensor L,
(iv) a = 0, b = 0, c = 1, then ω turns into concircular curvaure tensor
E,
(v) a − 1

n−1 , b = 0, c = 0, then ω turns into projective curvaure tensor
P ,
(vi) a = − 1

2n−2 = b, c = 0 then ω turns into m-projective curvaure
tensor H.
Simplifying (1) can be written as

ω(X,Y )Z = R(X,Y )Z + a[S(Y,Z)X − S(X,Z)Y ]

+b[g(Y,Z)QX − g(X,Z)QY ]

−cr
n

(
1

n− 1
+ a+ b

)
[g(Y,Z)X − g(X,Z)Y ],(2)

r being the scalar curvature of the manifold.
The present paper is outlined as follows: Section 2 is concerned with

rudiments of (LCS)n-manifolds. Section 3 deals with the study of some
basic properties of invariant submanifolds of (LCS)n-manifolds. In anal-
ogous to the work of [8], in section 4, we have studied the notion of gen-
eralized quasi-conformally semiparallel submanifolds which is defined as
follows:
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Definition 1.1. An immersed submanifold M̄ of M is said to be
generalized quasi-conformally semiparallel (briefly ω-semiparallel) if

(3) ω̄(X,Y ) · σ = 0

holds for all vector fields X, Y tangent to M̄ , where ω̄ denotes the
generalized quasi-conformal curvature tensor with respect to Vander-
Waerden-Bortolotti connection ∇̄ of M̄ and σ is the second fundamental
form.

Semiparallel immersed submanifolds have also been studied in [9],
[10], [21], [35]. It is found that for each of (i) C̄(X,Y ) · σ = 0, (ii)
L̄(X,Y ) · σ = 0 and (iii) H̄(X,Y ) · σ = 0, invariant submanifold of
a (LCS)n-manifold is totally geodesic if and only if σ(Z,QY ) = 0
whereas for each of (i) R̄(X,Y ) · σ = 0, (ii) Ē(X,Y ) · σ = 0 and (iii)
P̄ (X,Y ) · σ = 0, invariant submanifold of a (LCS)n-manifold is totally
geodesic.

Further, keeping the spirit of Arslan et al. [1], we have also stud-
ied generalized quasi-conformally 2-semiparallel invariant submanifolds
which is defined as follows:

Definition 1.2. An immersed submanifold M̄ of M is said to be
generalized quasi-conformally 2-semiparallel (briefly ω 2-semiparallel) if

(4) ω̄(X,Y ) · ∇̄σ = 0

holds for all vector fields X, Y tangent to M̄ .

It is observed that for each of (i) C̄(X,Y ) · ∇̄σ = 0, (ii) L̄(X,Y ) ·
∇̄σ = 0 and (iii) H̄(X,Y ) · ∇̄σ = 0, invariant submanifold of a (LCS)n-
manifold with non-vanishing ξ-sectional curvature is totally geodesic if
and only if σ(Z,QY ) = 0 whereas for each of (i) R̄(X,Y ) · ∇̄σ = 0, (ii)
Ē(X,Y ) · ∇̄σ = 0 and (iii) P̄ (X,Y ) · ∇̄σ = 0, invariant submanifold of
a (LCS)n-manifold with non-vanishing ξ-sectional curvature is totally
geodesic.

In section 5 of this paper we have investigated invariant submanifold
of a (LCS)n-manifold whose second fundamental form σ satisfies [36]

(5) (∇̄Xσ)(Y, Z) = B1(X)σ (Y,Z) + C1(Y )σ (X,Z) +D1(Z)σ (Y,X)

where B1, C1 and D1 are non-zero 1-forms defined by B1(X) = g(X, δ),
C1(X) = g(X, θ) and D1(X) = g(X,ψ). Finally, we have cited an ex-
ample of an invariant submanifold of a (LCS)n-manifold to support our
claims.
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2. Preliminaries

A (LCS)n-manifold is a Lorentzian manifold M of dimension n en-
dowed with the unit timelike concircular vector field ξ, its associated
1-form η and an (1, 1) tensor field φ such that

(6) ∇Xξ = αφX,

α being a non-zero scalar function such that

(7) ∇Xα = (Xα) = α(X) = ρη(X),

ρ being a certain scalar function and ∇ is the Levi-Civita connection of
the Lorentzian metric g.

In a (LCS)n-manifold, the following relations hold ([24], [25], [26]):

η(ξ) = −1, φ ◦ ξ = 0,(8)

η(φX) = 0, g(φX, φY ) = g(X,Y ) + η(X)η(Y ),(9)

(∇Xη)(Y ) = α{g(X,Y ) + η(X)η(Y )},(10)

η(R(X,Y )Z) = (α2 − ρ)[g(Y, Z)η(X)− g(X,Z)η(Y )],(11)

R(X,Y )ξ = (α2 − ρ)[η(Y )X − η(X)Y ],(12)

S(X, ξ) = (n− 1)(α2 − ρ)η(X)(13)

R(X,Y )Z = φR(X,Y )Z + (α2 − ρ){g(Y,Z)η(X)

−g(X,Z)η(Y )}ξ(14)

for all vector fields X,Y, Z ∈ χ(M) and β = −(ξρ) is a scalar function.
In consequence of (12), (13) and (2) we have

ω(ξ, Y )Z = a[S(Y, Z)ξ − (n− 1)(α2 − ρ)η(Z)Y ]

+b[(n− 1)(α2 − ρ)g(Y, Z)ξ − η(Z)QY ] + [(α2 − ρ)

−cr
n

(
1

n− 1
+ a+ b

)
][g(Y,Z)ξ − η(Z)Y ].(15)

ω(ξ, Y )ξ = [(α2 − ρ){(n− 1)(a+ b) + 1}

−cr
n

(
1

n− 1
+ a+ b

)
][η(Y )ξ + Y ].(16)
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3. Some basic properties of invariant submanifolds of
(LCS)n-manifolds

Let ∇̄ and ∇̄⊥ be the induced connection on TM̄ and T⊥M̄ respec-
tively. Then the Gauss and Weingarten formulae are given by

(17) ∇XY = ∇̄XY + σ(X,Y )

and

(18) ∇XV = ∇̄⊥XV −AVX
for all X,Y ∈ Γ(TM̄) and V ∈ Γ(T⊥M̄), where σ and AV are second
fundamental form and the shape operator (corresponding to the normal
vector field V ) respectively for the immersion of M̄ into M they are
related by [37]

(19) g(σ(X,Y ), V ) = g(AVX,Y ).

Note that σ(X,Y ) is bilinear and since ∇πXY = π∇XY for any smooth
function π on a manifold, we have

(20) σ(πX, Y ) = πσ(X,Y ).

Now, M̄ is said to be invariant [7] if the structure vector field ξ is tangent
to M̄ and φ(TM̄) ⊂ TM̄ at every point of M̄ . Also M̄ is called totally
geodesic if σ(X,Y ) = 0 for any X,Y ∈ Γ(TM̄). The covariant derivative
of σ is

(21) (∇̄Xσ)(Y,Z) = ∇⊥X(σ(Y,Z))− σ(∇XY, Z)− σ(Y,∇XZ)

for any vector field X,Y, Z tangent to M̄ . Then ∇̄σ is a normal bundle
valued tensor of type (0,3) and is said to be third fundamental form of
M̄ , ∇̄ is called the Vander–Waerden–Bortolotti connection of M , i.e.,
∇̄ is the connection in TM̄ ⊕ T⊥M̄ built with ∇ and ∇⊥. If ∇̄σ = 0,
then M̄ is said to have parallel second fundamental form [37]. From the
Gauss and Weingarten formulae, we obtain

(22) R̄(X,Y )Z = R(X,Y )Z +Aσ(X,Z)Y −Aσ(Y,Z)X,

where R̄(X,Y )Z denotes the tangential part of the curvature tensor of
M̄ . We know that

(R̄(X,Y ) · σ)(Z,U) = R⊥(X,Y )σ(Z,U)

−σ(R(X,Y )Z,U)− σ(Z,R(X,Y )U)(23)

for all vector fields X,Y, Z and U , where

(24) R⊥(X,Y ) = [∇⊥X ,∇⊥Y ]−∇⊥[X,Y ]
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and R̄ denotes the curvature tensor of ∇̄. In the similar manner one can
write

(R̄(X,Y ) · ∇̄σ)(Z,U,W ) = R⊥(X,Y )(∇̄σ)(Z,U,W )

−(∇̄σ)(R(X,Y )Z,U,W )

−(∇̄σ)(Z,R(X,Y )U,W )

−(∇̄σ(Z,U,R(X,Y )W ))(25)

for all vector fields X,Y, Z, U and W tangent to M̄ and (∇̄σ)(Z,U,W ) =
(∇̄Zσ)(U,W ). Again for the ω-tensor we have [21]

(ω̄(X,Y ) · σ)(Z,U) = R⊥(X,Y )σ(Z,U)− σ(ω(X,Y )Z,U)

−σ(Z, ω(X,Y )U)(26)

and

(ω̄(X,Y ) · ∇̄σ)(Z,U,W ) = R⊥(X,Y )(∇̄σ)(Z,U,W )

−(∇̄σ)(ω(X,Y )Z,U,W )

−(∇̄σ)(Z, ω(X,Y )U,W )

−(∇̄σ(Z,U, ω(X,Y )W )).(27)

In an invariant submanifold M̄ of a (LCS)n-manifold, we have [2]

σ(X, ξ) = 0,(28)

∇̄Xξ = αφX,(29)

R̄(X,Y )ξ = (α2 − ρ)[η(Y )X − η(X)Y ],(30)

S̄(X, ξ) = (n− 1)(α2 − ρ)η(X),(31)

σ(X,φY ) = φσ(X,Y ).(32)

4. Invariant submanifolds of (LCS)n-manifolds admitting
ω̄(X,Y ) · σ = 0 and ω̄(X,Y ) · ∇̄σ = 0

Let M̄ be an invariant submanifold of a (LCS)n-manifold M satisfy-
ing ω̄(X,Y ) · σ = 0 such that r = n(n− 1)(α2 − ρ). Then we have from
(26) that

(33) R⊥(X,Y )σ(Z,U)− σ(ω(X,Y )Z,U)− σ(Z, ω(X,Y )U) = 0.

Plugging X = U = ξ in (33) and using (15) and (28), we get

(34) σ(Z, ω(ξ, Y )ξ) = 0,
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which yields

bσ(Z,QY ) =

−
[
(α2 − ρ){(n− 1)a+ 1} − cr

n

(
1

n− 1
+ a+ b

)]
σ(Z, Y ).(35)

This leads to the followings:

Theorem 4.1. Let M̄ be an invariant submanifold of a (LCS)n-
manifold M . Then for each of (i) C̄(X,Y )·σ = 0, (ii) L̄(X,Y )·σ = 0 and
(iii) H̄(X,Y ) ·σ = 0, M̄ is totally geodesic if and only if σ(Z,QY ) = 0.

Theorem 4.2. Let M̄ be an invariant submanifold of a (LCS)n-
manifold M . Then for each of (i) R̄(X,Y ) · σ = 0, (ii) Ē(X,Y ) · σ = 0
and (iii) P̄ (X,Y ) · σ = 0, M̄ is totally geodesic.

Taking account of ([35], Theorem 4.2) and the above theorems, one
can state that the following:

Theorem 4.3. Let M̄ be an invariant submanifold of a (LCS)n-
manifold M . Then for each of (i) C̄(X,Y )·σ = 0, (ii) L̄(X,Y )·σ = 0 and
(iii) H̄(X,Y ) · σ = 0, the second fundamental form of the submanifold
M̄ is parallel if and only if σ(Z,QY ) = 0.

Theorem 4.4. Let M̄ be an invariant submanifold of a (LCS)n-
manifold M . Then for each of (i) R̄(X,Y ) · σ = 0, (ii) Ē(X,Y ) · σ = 0
and (iii) P̄ (X,Y )·σ = 0, the second fundamental form of the submanifold
M̄ is parallel if and only if M̄ is totally geodesic.

Let M̄ be an invariant submanifold of a (LCS)n-manifold M , whose
ω-tensor is 2-semi parallel. Then from (27), we get

0 = R⊥(X,Y )(∇̄σ)(Z,U,W )− (∇̄σ)(ω(X,Y )Z,U,W )

−(∇̄σ)(Z, ω(X,Y )U,W )− (∇̄σ(Z,U, ω(X,Y )W ))(36)

which yields for X = U = ξ

0 = R⊥(ξ, Y )(∇̄σ)(Z, ξ,W )− (∇̄σ)(ω(ξ, Y )Z, ξ,W )

−(∇̄σ)(Z, ω(X,Y )ξ,W )− (∇̄σ(Z, ξ, ω(ξ, Y )W )) .(37)

In consequence of (6), (12), (21) and (28), one can easily bring out the
following:

(∇̄σ)(Z, ξ,W ) = (∇̄σZ)(ξ,W ) = −ασ(φZ,W ),(38)
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(∇̄σ)(ω(ξ, Y )Z, ξ,W ) = (∇̄ω(ξ,Y )Zσ)(ξ,W )

= αb[η(Z)σ(φQY,W )]

+α[(α2 − ρ){a(n− 1) + 1}

−cr
n

(
1

n− 1
+ a+ b

)
]η(Z)σ(φY,W ),(39)

(∇̄σ)(Z, ω(ξ, Y )ξ,W ) = (∇̄Zσ)(ω(ξ, Y )ξ,W )

= [(α2 − ρ){(n− 1)(a+ b) + 1}

−cr
n

(
1

n− 1
+ a+ b

)
][∇⊥Z (σ(Y,W ))

−σ(∇Z{Y + η(Y )ξ},W )− σ((Y,∇ZW )](40)

and

(∇̄σ)(Z, ξ, ω(ξ, Y )W ) = (∇̄Zσ)(ξ, ω(ξ, Y )W )

= bαη(W )σ(φZ,QY )

+α[(α2 − ρ){(n− 1)a+ 1}

−cr
n

(
1

n− 1
+ a+ b

)
]η(W )σ(φZ, Y ).(41)

Using (6), (38)–(41) in (37), we obtain

0 = − αR⊥(ξ, Y )σ(φZ,W )− αb [η(Z)σ(φQY,W )]

− α

[
(α2−ρ){a(n−1)+1}− cr

n

(
1

n−1
+a+b

)]
[η(Z)σ(φY,W )]

−
[
(α2 − ρ){(n− 1)(a+ b) + 1} − cr

n

(
1

n− 1
+ a+ b

)]
×[∇̄⊥Z (σ(Y,W ))− σ(∇̄Z{Y + η(Y )ξ},W )− σ((Y, ∇̄ZW )]

− bαη(W )σ(φZ,QY )

− α

[
(α2 − ρ){(n− 1)a+ 1} − cr

n

(
1

n− 1
+ a+ b

)]
×[η(W )σ(φZ, Y )].(42)

Putting W = ξ in (42) and using (28) and (29), we get

0 =

[
(α2 − ρ){(n− 1)(2a+ b) + 2} − cr

n

(
1

n− 1
+ a+ b

)]
σ(Y, φZ)

+bσ(φZ,QY ).(43)

In consequence of ([35], Theorem 4.3), one can state that
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Theorem 4.5. Let M̄ be an invariant submanifold of a (LCS)n-
manifold M with non-vanishing ξ-sectional curvature. Then for each of
(i) C̄(X,Y ) · ∇̄σ = 0, (ii) L̄(X,Y ) · ∇̄σ = 0 and (iii) H̄(X,Y ) · ∇̄σ = 0,
M̄ is totally geodesic if and only if σ(Z,QY ) = 0.

Theorem 4.6. Let M̄ be an invariant submanifold of a (LCS)n-
manifold M with non-vanishing ξ-sectional curvature. Then M̄ is totally
geodesic if and only if

(i) R̄(X,Y ) · ∇̄σ = 0,
(ii) Ē(X,Y ) · ∇̄σ = 0 and
(iv) P̄ (X,Y ) · ∇̄σ = 0.

5. Invariant submanifolds of a (LCS)n-manifold whose sec-
ond fundamental form σ is weakly symmetric type

In this section, since M has parallel second fundamental form, it
follows from (21) that

(44) (∇̄Xσ)(Y,Z) = ∇̄⊥X(σ(Y,Z))− σ(∇XY, Z)− σ(Y,∇XZ)

Putting Z = ξ in (44) and making use of (28) and (29), we have

(45) (∇̄Xσ)(Y, ξ) = ασ(Y,X).

In consequence of (5) and (45) one can easily bring out

(46) [α−D1(ξ)]σ(Y,X) = 0.

This leads to the following:

Theorem 5.1. Let M̄ be an invariant submanifold of a (LCS)n-
manifold M with α 6= D1(ξ). Then M̄ is totally geodesic if second
fundamental form σ is of the following types

(i) symmetric,
(ii) recurrent,
(iii) pseudo symmetric,
(iv) almost pseudo symmetric and
(v) weakly pseudo symmetric.

6. Example

Example 6.1. Let us consider a 4-dimensional connected manifold
M = {(x1, x2, x3, x4) ∈ R4 : x4 6= 0}, where (x1, x2, x3, x4) being stan-
dard coordinates in R4. Let {e1, e2, e3, e4} be a linearly independent
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global frame on M given by

e1 = x1x4
(

∂

∂x1
+

∂

∂x3

)
, e2 = x4

∂

∂x2
, e3 = x4

∂

∂x3
, e4 = (x4)3

∂

∂x4
.

Let g be the Lorentzian metric defined by g( ∂
∂x1

, ∂
∂x1

) =
(

1
x1x4

)2
, g( ∂

∂x2
,

∂
∂x2

) = g( ∂
∂x3

, ∂
∂x3

) =
(

1
x4

)2
, g( ∂

∂x4
, ∂
∂x4

) = −
(

1
x4

)6
and g( ∂

∂xi
, ∂
∂xj

) = 0
for i 6= j = 1, 2, 3, 4. Let η be the 1-form defined by η(U) = g(U, e4) for
any U ∈ χ(M). Let φ be the (1,1) tensor field defined by φe1 = e1, φe2 =
e2, φe3 = e3 and φe4 = 0. Then using the linearity of φ and g we have
η( e4) = −1, φ2U = U +η(U) e4 and g(φU, φW ) = g(U,W )+η(U)η(W )
for any U,W ∈ χ(M). Thus for e4 = ξ, (φ, ξ, η, g) defines a Lorentzian
paracontact structure on M .

Let ∇ be the Levi-Civita connection with respect to the Lorentzian
metric g and R be the curvature tensor of g. Then we have

[e1, e2] = −x4e2, [e1, e4] = −
(
x4

)2
e1, [e2, e4] = −

(
x4

)2
e2, [e3, e4] =

−
(
x4

)2
e3.

Taking e4 = ξ and using Koszul formula for the Lorentzian metric g,
we can easily calculate

∇e1e4 = −
(
x4

)2
e1, ∇e2e4 = −

(
x4

)2
e2, ∇e3e4 = −

(
x4

)2
e3,

∇e1e1 = −
(
x4

)2
e4, ∇e2e1 = x4e2, ∇e3e3 = −

(
x4

)2
e4,

∇e2e2 = −
(
x4

)2
e4 − x4e1, ∇e4e1 = 0, ∇e3e2 = 0,

∇e1e3 = 0, ∇e1e2 = 0, ∇e3e1 = 0, ∇e4e4 = 0,

∇e4e2 = 0, ∇e4e3 = 0.

From the above it can be easily seen that (φ, ξ, η, g) is a (LCS)4 -
structure on M . Consequently M(φ, ξ, η, g) is a (LCS)4-manifold with

α = −
(
x4

)2 6= 0 and ρ = 2
(
x4

)2
.

Let M̄ be a subset of M and consider the isometric immersion π :
M̄ −→ M defined by π(x1, x2, x4) = (x1, x2, 0, x4). It can be easily
proved that M̄ = {(x1, x2, x4) ∈ R3 (x1, x2, x4) 6= 0} is a 3-dimensional
submanifold of M , where (x1, x2, x4) are standard coordinates in R3.
We choose the vector fields

e1 = x1x4
(

∂

∂x1
+

∂

∂x3

)
, e2 = x4

∂

∂x2
, e4 = (x4)3

∂

∂x4
.

Let g be the Lorentzian metric defined by g( ∂
∂x1

, ∂
∂x1

) =
(

1
x1x4

)2
,

g( ∂
∂x2

, ∂
∂x2

) =
(

1
x4

)2
, g( ∂

∂x4
, ∂
∂x4

) = −
(

1
x4

)6
and g( ∂

∂xi
, ∂
∂xj

) = 0 for
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i 6= j = 1, 2, 4. Let φ be the (1, 1) tensor field defined by φe1 = e1,
φe2 = e2, φe4 = 0. Then using the linearity of φ and g we have

η(e4) = −1, φ2U = U + η(U)e4 and

g(φU, φW ) = g(U,W ) + η(U)η(W ).

Thus for e4 = ξ, (φ, ξ, η, g) defines a Lorentzian paracontact structure
on M̄ .

Let ∇̄ be the Levi-Civita connection with respect to the Lorentzian
metric g and R be the curvature tensor of g. Then we have

[e1, e2] = −x4e2, [e1, e4] = −
(
x4

)2
e1, [e2, e4] = −

(
x4

)2
e2.

Taking e4 = ξ and using Koszul formula for the Lorentzian metric g,
we can easily calculate

∇̄e1e4 = −
(
x4

)2
e1, ∇̄e2e4 = −

(
x4

)2
e2,

∇̄e1e1 = −
(
x4

)2
e4, ∇̄e2e1 = x4e2,

∇̄e2e2 = −
(
x4

)2
e4 − x4e1, ∇̄e4e1 = 0,

∇̄e4e2 = 0, ∇̄e1e2 = 0, ∇̄e4e4 = 0.

From the above it can be easily seen that (φ, ξ, η, g) is a (LCS)3 -
structure on M̄ . Consequently M3(φ, ξ, η, g) is a (LCS)3-manifold with

α = −
(
x4

)2 6= 0 and ρ = 2
(
x4

)2
. Finally, from the values of ∇eiej and

∇̄elek, where i, j ∈ {1, 2, 3, 4} and l, k ∈ {1, 2, 4}, one can easily obtain
σ = 0 and hence M̄ is totally geodesic. Thus, Theorems 4.1- 4.6 and 5.1
are verified.
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