• Title/Summary/Keyword: weak contraction

Search Result 58, Processing Time 0.017 seconds

COMMON FIXED POINTS OF A LIMIT WEAK COMPATIBLE PAIR OF A MULTIVALUED MAPPING AND A SINGLE VALUED MAPPING IN D-METRIC SPACES

  • Singh, Bijendra;Jain, Shobha;jain, Shishir
    • East Asian mathematical journal
    • /
    • v.22 no.1
    • /
    • pp.35-51
    • /
    • 2006
  • This paper deals with a general contraction. Two fixed-point theorems for a limit weak-compatible pair of a multi-valued map and a self map on a D-metric space have been established. These results improve significantly, the main results of Dhage, Jennifer and Kang [5] by reducing its assumption and generalizing its contraction simultaneously. At the same time some results of Singh, Jain and Jain [12] are generalized from a self map to a pair of a set-valued and a self map. Theorems of Veerapandi and Rao [16] get generalized and improved by these results. All the results of this paper are new.

  • PDF

FIXED POINT THEOREMS OF EXTENSION AND MODIFIED EXTENSION α-F-CONTRACTION ON COMPLETE METRIC SPACE

  • Saeed A. A. Al-Salehi;V. C. Borkar
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.461-475
    • /
    • 2024
  • The concept of an extension α-F-contraction and it's modified counterpart represents an advancement in the theory of metric space contractions. Through our study of the contraction principles and it's relationship to extension and modified extension, we found different conditions somewhat lengthy. In our paper, we create a development of the conditions for the extension of α-F-contraction and a modified α-F-contraction by reducing the conditions and make them easier. Our propose conditions are notably simple and effective. They serve as the foundation for proving theorems and solving examples that belong to our study. Moreover, they have remarkable significance in the condition of mathematical analysis and problem-solving. Thus, we find that these new conditions that we mention in the definitions achieve what is require and through them, we choose λ = 1 and we choose λ ∈ (0, 1) to clarify our ideas.

WEAK AND STRONG CONVERGENCE THEOREMS FOR AN ASYMPTOTICALLY k-STRICT PSEUDO-CONTRACTION AND A MIXED EQUILIBRIUM PROBLEM

  • Yao, Yong-Hong;Zhou, Haiyun;Liou, Yeong-Cheng
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.561-576
    • /
    • 2009
  • We introduce two iterative algorithms for finding a common element of the set of fixed points of an asymptotically k-strict pseudo-contraction and the set of solutions of a mixed equilibrium problem in a Hilbert space. We obtain some weak and strong convergence theorems by using the proposed iterative algorithms. Our results extend and improve the corresponding results of Tada and Takahashi [16] and Kim and Xu [8, 9].

CONVERGENCE OF VISCOSITY APPROXIMATIONS TO FIXED POINTS OF NONEXPANSIVE NONSELF-MAPPINGS IN BANACH SPACES

  • Jung, Jong-Soo
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.81-95
    • /
    • 2008
  • Let E be a uniformly convex Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm, C a nonempty closed convex subset of E, and $T\;:\;C\;{\rightarrow}\;E$ a nonexpansive mapping satisfying the weak inwardness condition. Assume that every weakly compact convex subset of E has the fixed point property. For $f\;:\;C\;{\rightarrow}\;C$ a contraction and $t\;{\in}\;(0,\;1)$, let $x_t$ be a unique fixed point of a contraction $T_t\;:\;C\;{\rightarrow}\;E$, defined by $T_tx\;=\;tf(x)\;+\;(1\;-\;t)Tx$, $x\;{\in}\;C$. It is proved that if {$x_t$} is bounded, then $x_t$ converges to a fixed point of T, which is the unique solution of certain variational inequality. Moreover, the strong convergence of other implicit and explicit iterative schemes involving the sunny nonexpansive retraction is also given in a reflexive and strictly convex Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm.

  • PDF

APPROXIMATING COMMON FIXED POINT OF THREE MULTIVALUED MAPPINGS SATISFYING CONDITION (E) IN HYPERBOLIC SPACES

  • Austine Efut Ofem;Godwin Chidi Ugwunnadi;Ojen Kumar Narain;Jong Kyu Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.623-646
    • /
    • 2023
  • In this article, we introduce the hyperbolic space version of a faster iterative algorithm. The proposed iterative algorithm is used to approximate the common fixed point of three multi-valued almost contraction mappings and three multi-valued mappings satisfying condition (E) in hyperbolic spaces. The concepts weak w2-stability involving three multi-valued almost contraction mappings are considered. Several strong and △-convergence theorems of the suggested algorithm are proved in hyperbolic spaces. We provide an example to compare the performance of the proposed method with some well-known methods in the literature.

NEW BEST PROXIMITY POINT RESULTS FOR DIFFERENT TYPES OF NONSELF PROXIMAL CONTRACTIONS WITH AN APPLICATION

  • Khairul Habib Alam;Yumnam Rohen;S. Surendra Singh;Kshetrimayum Mangijaobi Devi;L. Bishwakumar
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.581-596
    • /
    • 2024
  • A new variety of non-self generalized proximal contraction, called Hardy-Rogers α+F-proximal contraction, is shown in this work. Also, with an example, we prove that such contractions satisfying some conditions must have a unique best proximity point. For some particular values of the constants, that we have used to generalize the proximal contraction, we conclude different α+F-proximal contraction results of the types Ćirić, Chatterjea, Reich, Kannan, and Banach with proof, that all such type of contractions must have unique best proximity point. We also apply our result to solve a functional equation.

A COMMON FIXED POINT RESULT FOR A (${\psi}$, ${\varphi}$)-WEAK CONTRACTIVE CONDITION TYPE

  • Aydi, Hassen
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.809-820
    • /
    • 2012
  • We establish a coincidence and a common fixed point result for four mappings involving a (${\psi}$, ${\varphi}$)-weak contractive condition type on a complete metric space. We take on ${\psi}$ and ${\varphi}$ the same conditions given by Popescu [Fixed points for (${\psi}$, ${\varphi}$)-weak contractions, Appl. Math. Lett. 24 (2011), 1-4].

COINCIDENCE POINT RESULTS FOR (𝜙, 𝜓)-WEAK CONTRACTIVE MAPPINGS IN CONE 2-METRIC SPACES

  • Islam, Ziaul;Sarwar, Muhammad;Tunc, Cemil
    • Honam Mathematical Journal
    • /
    • v.43 no.2
    • /
    • pp.305-323
    • /
    • 2021
  • In the present paper, utilizing (𝜙, 𝜓)-weak contractive conditions, unique fixed point and some coincidence point results have been studied in the context of cone 2- metric spaces. Also, our obtained results generalize some results from cone metric space to cone 2-metric space. For the authenticity of the presented work, a non trivial example is also provided.