Images are unavoidably contaminated with different types of noise during the processes of image acquisition and transmission. The main forms of noise are impulse noise (is also called salt and pepper noise) and Gaussian noise. In this paper, an effective method of removing mixed noise from images is proposed. In general, different types of denoising methods are designed for different types of noise; for example, the median filter displays good performance in removing impulse noise, and the wavelet denoising algorithm displays good performance in removing Gaussian noise. However, images are affected by more than one type of noise in many cases. To reduce both impulse noise and Gaussian noise, this paper proposes a denoising method that combines adaptive median filtering (AMF) based on impulse noise detection with the wavelet threshold denoising method based on a Gaussian mixture model (GMM). The simulation results show that the proposed method achieves much better denoising performance than the median filter or the wavelet denoising method for images contaminated with mixed noise.
최근, 현대전은 GPS 위치측위를 바탕으로 정밀타격체계 및 미사일 방어체계가 핵심이 되어가고 있다. 하지만 군 환경 특성상 산악지형 및 시가전에서의 지형지물로 인한 large/small scale fading, 주파수 간섭 등으로 인해 오차를 가진 위치정보를 얻게 된다. 이는 아군 위치 파악 실패로 인한 지원 지연 및 유도탄 오폭으로 인명피해를 발생시키게 된다. 본 연구는 위치오차를 보정하기 위해 wavelet denoising filter를 이용한 간섭완화 측위기법을 제안한다. 실험 결과는 본 연구실에서 수행한 GPS/QZSS/Wi-Fi밀결합 측위 기법의 실증 테스트 결과와 wavelet denoising filter를 적용한 시스템의 시뮬레이션 결과로 간섭완화 성능을 나타낸다. Wavelet denoising filter를 적용한 시스템의 시뮬레이션 결과는 기존 GPS보다 평균 21.6% 의 정확도 향상을 보이며 제안한 시스템 모델의 우수성을 입증한다.
본 논문은 웨이블렛 영역에서 신호성분을 보존하면서 첨부된 잡음성분을 제거할 수 있는 새로운 잡음제거 필터를 제시한다. 적응적 웨이블렛 수축(AWS) 필터라 불리는 제안된 필터는 웨이블렛 제거기와 적응적 수축기의 두 개 연산기로 구성되어 있으며 각각의 연산기는 웨이블렛 계수의 국부적 통계성을 이용하여 적응적으로 추정되는 threshold에 의존하여 선택되는데 웨이블렛 제거기는 threshold보다 작은 웨이블렛 계수들을 0으로 대신하여 웨이블렛 영역에서 잡음을 제거하게 된다. 또한 적응적 수축기는 threshold보다 큰 계수들을 적응적으로 수축하여 신호성분을 보존하면서 잡음성분을 줄이게 된다. 실험 결과, 제안된 필터는 기존의 방법들보다 잡음을 제거하면서 신호성분을 보존하는데 더욱 효과적임을 보여준다.
웨이브렛 변환 데이터는 신호의 상세 정보를 포함하고 있으므로 주파수 대역별로 필터링할 수 있다. 따라서, 본 논문에서는 중요한 두 가지 잡음을 웨이브렛을 사용하여 제거하였다. AWGN 환경에 대해서 hard-threshold를 적용한 UDWT(undecimated discrete wavelet transform)를 사용하였으며, 임펄스 잡음환경에 대해서는 임계치에 의한 잡음 제거와 웨이브렛에 의한 신호의 slope를 이용하여, 잡음 제거 효과를 최대로 함과 동시에 원신호의 edge를 인식하도록 하였다. 이러한 잡음 제거 효과의 판단 기준으로 SNR을 사용하였으며, 테스트 신호로서 Blocks와 DTMF(dual tone multi frequency)를 사용하였다.
Image denoising is basic work for image processing, analysis and computer vision. This paper proposes a novel algorithm based on wavelet threshold for image denoising, which is combined with the linear CLS (Constrained Least Squares) filtering and thresholding methods in the transform domain. We demonstrated through simulations with images contaminated by white Gaussian noise that our scheme exhibits better performance in both PSNR (Peak Signal-to-Noise Ratio) and visual effect.
웨이블릿 영역은 일반적으로 신호 성분을 많이 포함하는 큰 계수와 신호 성분이 작은 크기의 계수로 나누어 질 수 있다. 이러한 웨이블릿 계수의 통계적 특성을 가우스 혼합 모델로 설정하고, 잡음 제거에 응용하는 것은 효율적이다. 본 논문에서는 웨이블릿 계수의 혼합 모델링을 이용하여 영상의 잡음 제거 방법을 제안한다. 적절한 문턱값을 이용하여 웨이블릿 계수를 두영역으로 분리하여 이진 마스크를 생성하고, 생성된 마스크의 정보는 잡음 제거에 효율적으로 사용된다 또한 생성된 마스크의 정보를 형태학적 필터를 이용하여 보다 정확히 추정하고 이를 이용하여 제안한 잡음 제거 방법의 성능을 높이는 방법을 제안한다. 모의실험 결과를 통하여 제안 방법이 최신 잡음 제거 방법보다 우수한 PSNR을 나타낸다는 것을 보여 준다.
영상향상 방법 중의 하나인 잡음제거는 공간영역과 변환영역 필터링에 대해서 많은 연구가 되어 왔다. 최근에는 에너지 집중도가 탁월하고 다분해능 성질을 갖는 웨이브릿 변환이 많이 사용되고 있다. 그러나 최종 사용자가 인간인 경우에는 인간시각체계에 기반한 변환을 사용하는 것이 시각적으로 유용하므로, 본 논문에서는 인간시각필터로 고려되는 Gabor 코사인과 사인 함수를 이용한 변환을 영상 잡음제거 분야에 적용하였다. 제안한 방법은 웨이브릿 변환과 다른 종류의 인간시각필터인 Gaussian 미분 변환에 대해서 피크신호대잡음비로 잡음제거 성능을 비교하였다. 여러 가지 잡음의 3가지 레벨에 대해서 실제 영상의 실험으로부터 제안한 변환이 BWT와 DGT보다 PSNR이 각각 0.41, 0.14dB 더 좋은 결과를 얻었다.
디지털 카메라, 멀티미디어 등의 보급으로 인하여 일상생활 전반에서 영상이 사용되고 있다. 그러나 영상은 잡음에 의해 열화가 발생하고, 화질개선을 위한 잡음제거 기술의 필요성이 대두되고 있다. 잡음제거를 위한 기존의 방법들에는 워너 필터, 평균 필터, VisuShrink 등이 있지만, 미흡한 잡음제거성능을 나타낸다. 따라서 본 논문에서는 영상 잡음 제거를 위해, 위너 필터 및 변형된 웨이브렛 기반의 적응 임계값과 thresholding 함수를 이용한 하이브리드 필터 알고리즘을 제안하였다. 제안한 방법은 기존의 방법들에 비해, 저주파 특성과 고주파 특성을 동시에 나타내고, 우수한 잡음제거 및 에지보존 특성을 나타냈다.
영상 잡음의 제거를 위해서는 영상에 대한 통계적 모델을 설정하고, 잡음이 섞인 영상에서 원 영상의 분산을 정확하게 추정하는 것이 매우 중요하다. 추정된 원 영상의 분산을 이용하여 잡음 영상에 Wiener 필터를 적용함으로써 영상의 잡음을 제거하는 것이 일반적이다. 본 논문에서는 영상의 잡음을 제거하기 위해 웨이블릿 계수의 새로운 통계적 혼합 모델링을 제안한다. 먼저 웨이블릿 계수의 중요한 특성을 획득할 수 있는 중요도(重要圖)를 작성하기 위해 간단한 분류 방법을 사용한다. 분류된 중요도에 혼합 모델의 상태 확률을 계산하고, 이를 이용하여 신호의 분산을 추정한다. 실험 결과를 통하여 제안 방법이 기존의 방법보다 0.1-0.2㏈ 정도 높은 PSNR을 보여준다는 것을 알 수 있다.
웨이블릿 축소 기법으로 영상신호의 잡음을 제거할 때, 웨이블릿 계수들이 상관관계를 갖는 경우 잡음제거 효과가 저하된다. 멀티웨이블릿 변환된 계수 들은 사전 필터의 영향으로 상관관계를 갖게 된다. 이러한 문제점을 해결하기위해 V Sterela에 의해 Universal 경계 값 적용을 위한 사전 필터를 새로 설계하거나 가중 값을 적용하는 기법이 제시되었다. 본 논문에서는 멀티웨이블릿 변환 영역에서 웨이블릿 축소 기법의 잡음제거 효과를 향상시키기 위해, 대역의 계수를 추정된 잡음편차로 나누는 계수 정규화기법을 Universal, SURE 및 GCV 경계 값에 적용하여 잡음을 제거하는 시도를 하였다. 각 경계 값들에 대한 PSNR을 비교하여 이 기법의 실용성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.