• Title/Summary/Keyword: wave-energy

Search Result 2,430, Processing Time 0.025 seconds

Reflection and Hydraulic Characteristics inside Two-Chamber Vertical Slit Caisson in 3-D Oblique Wave Field (3차원 경사입사파동장에서 이중유공슬릿케이슨 내부의 수리특성 및 반사특성)

  • Hur, Dong-Soo;Lee, Jun;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.227-235
    • /
    • 2014
  • Using a 3-D numerical scheme (LES-WASS-3D) that considered wave-structure-sandy seabed interactions in a 3-D wave field, we analyzed the wave reflection and hydraulic characteristics inside a slit caisson with two chambers in a 3-D oblique wave field. To verify the 3-D numerical analysis method suggested in this study, we compared the numerical results with existing experimental results and found good agreement. The numerical analysis revealed that a standing wave field is generated on the front side of the slit caisson due to the effect of wave reflection. For incident waves propagating perpendicular to the slit caisson, the nodes and anti-nodes of the standing wave are apparent and symmetrical. However, in an oblique wave field, as the incident wave angle decreases, the nodes and anti-nodes of the standing wave become ambiguous and unsymmetrical. It was also found that the wave reflection coefficient decreases as the incident wave angle decreases. It can be pointed out that as the incident wave angle decreases, the turbulent intensity in the chamber increases. Thereby, the increased wave energy dissipation by the increased turbulent intensity reduces the rate of wave reflection. In addition, a strong turbulent intensity generally occurs in the first chamber.

Study on the Rectifier Circuits for Wireless Energy Transmission (무선 에너지 전송을 위한 정류회로에 관한 연구)

  • Shin, Doo-Soub;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.2
    • /
    • pp.90-94
    • /
    • 2011
  • In this paper, the energy transfer is associated with high frequency band and try to analysis the rectifier circuit structure and characteristics and find ways to maximum efficiency. Input signal at 13.56MHz is converted output DC signal with the experiments and measurements. Rectifier cirsuits can be divided into the half-wave, full-wave, bridge rectifier circuit. Research to the present with the passive components are carried out with a focus on efficiency improvements. Factors affecting the efficiency of rectification is dependent on the characteristics of the device. In this experiment, about 70% efficiency can be measured. By using an improved device for high efficiency could be obtained higher efficiency.

Process Optimization for the Laser Cutting of Cold Rolled STS Sheet (냉연 스테인리스강판의 레이저 절단 특성)

  • 이기호;김기철
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.59-68
    • /
    • 1996
  • This study was aimed to characterize the laser cutting process for the cold rolled stainless steel sheet. The principal process parameters of the cutting process were applied to both the continuous wave form and the pulsed wave form for the laser output mode. The laser-oxygen cutting process and the laser-nitrogen cutting process were also considered to characterize the quality and efficiency of the cutting process. The laser-oxygen cutting process revealed the better productivity than the laser-nitrogen cutting process, since the laser energy and the exothermic oxidation energy exerted on the laser-oxygen cutting process simultaneously during the entire cutting process. However, the straightness of the cutting section, which was considered as the most important factors, was inferior to that of the laser-nitrogen cutting process due to the formation of chromum oxide on the cutting surface. Frequency and duration of the pulsed wave form act as the main factors for the better quality, When the frequency increased from 100 Hz to 200 Hz and the duty increased from 20% to 40%, the quality factors such as the height of dross and the surface roughness were improved remarkably. The increase in the frequency from 200 Hz to 300 Hz, on the other hand, revealed the less effective in the cutting quality.

  • PDF

Wave Transformation Due to Energy Dissipation Region (에너지 감쇠영역으로 인한 파랑변형)

  • 윤종태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.3
    • /
    • pp.135-140
    • /
    • 1999
  • To simulate the wave transformation by an energy dissipation region, a numerical model is suggested by discretizing the elliptic mild-slope equation. Generalized conjugate gradient method is used as solution algorithm to apply parabolic approximation to open boundary condition. To demonstrate the applicabil-ity of the numerical procedure suggested, the wave scattering by a circular damping region is examined. The feature of reflection in front of the damping region is captured clearly by the numerical solution. The effect of the size of dissipation coefficient is examined for a rectangular damping region. The recovery of wave height by diffraction occurs very slowly with distance behind the damping region.

  • PDF

Simulation of Ultrasonic Dry Cleaning for Semiconductor/display Device Application (반도체/디스플레이 소자용 초음파 건식세정 시뮬레이션 연구)

  • Yun, Eui-Jung;Lee, Gang-won;Kim, Chol-Ho;Lee, Seok-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1259-1263
    • /
    • 2004
  • In this paper, the optimum design of ultrasonic dry cleaning head was investigated. The transducer instead of mechanical dynamic structure was used to generate ultrasonic wave and the horn-shape amplifier was utilized to solve the energy decaying problem of ultrasonic wave with propagating it through the media. The analyses of ultrasonic wave and a fluid for the selected structure of a cleaning head were carried out using SYSNOISE and ANSYS simulators, respectively. Based on simulator results, the distance between a horn and the substrate of 4 mm and the horn diameter of 10 mm were determined to maximize the energy of ultrasonic waves. The cooling structure was also considered to reduce the heat from the transducer and the horn. The equivalent circuit for the fabricated horn was deduced from HP4194A impedance/gain/phase analyzer and the frequency of an ultrasonic wave of 20.25 kHz was confirmed using the parameters of the equivalent circuit.

Fast Defect Detection of PCB using Ultrasound Thermography (초음파 서모그라피를 이용한 빠른 PCB 결함 검출)

  • Cho, Jai-Wan;Jung, Hyun-Kyu;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.273-275
    • /
    • 2005
  • Active thermography is being used since several years for remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements were performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.

  • PDF

The Relationship Between Group velocity of Lamb wave $S_0$ Mode and Anisotropy in Laminated Unidirectional CFRP Plates (적층 Unidirectional CFRP 판의 이방성과 Lamb wave의 $S_0$ Mode 군속도의 관계)

  • Lee Jeong-kI;Kim Young H.;Lee Seung Suk;Kim Ho Chul
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.272-277
    • /
    • 2004
  • The elastic waves in the plate are dispersive waves with the characteristics of Lamb waves. However, $S_0$ symmetric mode is less dispersive in the frequency region less than first cut-off frequency. And, in anisotropic plates such as CFRP plates, the propagation velocities vary with the direction. So, the wave vector direction to be the phase velocity direction is not accord with the energy flow direction to be the group velocity direction. In this work, the group velocities of the $S_0$ symmetric mode less than the first cut-off frequency was analyzed with the group velocity dispersion curves in unidirectional CFRP plate. And, the group velocity curve obtained by the group velocity dispersion curves are compared with the measured velocities as varied the propagation direction of the Lamb wave. The measured velocities are good agreement with the corrected group velocity curve except near the fiber direction which is called the cusp region. When the propagation direction is not accorded with the principal axis, the direction of the group velocities declines to the fiber direction in the unidirectional CFRP plates. This implies that the energy propagates preferentially toward fiber direction.

  • PDF

Analysis on Daily Variation Mechanism of Short-wave Radiation between Downtown and Suburban Area during Summer Season (하절기 도심과밀지역과 인근 교외지역의 단파복사 일변화 메커니즘에 대한 해석)

  • Choi, Dong-Ho;Lee, Bu-Yong;Jeong, Hyeong-Se
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.111-122
    • /
    • 2014
  • The purpose of this study is to understand daily variation of short-wave radiation trends according to the state of surface and observation of atmosphere conditions in downtown and suburban observation area. The followings are main results from this study. 1) We found out daily air temperature variation of downtown is less than that of suburban area because of bigger heat capacity of artificial elements such as massive buildings and pavements. 2) It is more effective to estimate of air condition by water vapor pressure than relative humidity in the atmosphere. 3) The difference of solar radiation ratio between downtown and suburban area is dependant on different atmosphere conditions at two observation stations.

Response of the Wave Spectrum to Turning Winds (풍향 변화에 대한 파랑 스펙트럼의 반응)

  • 윤종태
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.111-121
    • /
    • 1997
  • The spectral energy balance model is composed and the nonlinear interaction is approximated by the discrete interaction parameterization as in WAM model. The numerical results of durational limited growth test agree very well with those of the exact model, EXACT-NL. The response of a wave spectrum to a change in wind direction is investigated numerically for a sequence of direction changes 30$^{\circ}$ , 45$^{\circ}$ , 60$^{\circ}$ , 90$^{\circ}$ . The high frequency components relax more repidly to the new wind direction than the low frequency components and the relaxation process also depends on the wave age. For wind direction changes less than 60$^{\circ}$ , the coupling by nonlinear interaction is so strong that the secondary peak in input source distribution is counteracted by the negative lobe of the nonlinear interaction. For wind direction changes grater than 60$^{\circ}$ , a second independent wind-sea spectrum is generated in the new wind direction, while the old spectrum gradually decays as swell.

  • PDF

Anti-Fouling System for Oscillating Water Column in Buoy (진동 수주형 브이의 Anti Fouling system)

  • Oh, Jin-Seok;Jo, Kwan-Jun
    • Journal of Navigation and Port Research
    • /
    • v.34 no.6
    • /
    • pp.441-445
    • /
    • 2010
  • The ouput power of wave energy system in buoy is determined according to the inner diameter of oscillating water column and flow resistance. The increase of adhered shellfish inside the water column leads to decrease the inner diameter of wave energy converter. Influx loss of seawater reduces the efficiency of output power in the wave generation system. In this paper, the test result of AFS characteristic is described for preventing the deposition with shellfish and etc. The current of anode is controlled by buck converter, and the control algorithm developed for AFS in buoy. The experimental results is shown excellent preventing capapbility of AFS in buoy.