• Title/Summary/Keyword: water reducing ratio

Search Result 336, Processing Time 0.028 seconds

Effect of Extraction on Chemical Composition of Rcd Ginseng Extract (추출 회수에 따른 홍삼 extract의 성분 조성에 관한 연구)

  • 최강주;김만욱;성현순;홍순근
    • Journal of Ginseng Research
    • /
    • v.4 no.1
    • /
    • pp.88-95
    • /
    • 1980
  • Red ginseng was extracted with water and analyzed for yield, saponin, pectin and other chemical composition. It was found that: (1) The total solid content in extract after 6 times of extraction was 46.8%,: including 13.6% of centrifugal residue; (2) 83.7% of total extractable solids and 86% total saponin was extracted after the initial three runs of extraction. (3) No significant changes were observed in HPLC pattern of extracted saponins over a range of extractions; (4) The ratio of centrifugal residue to total solids increased as the number of extractions increased; (5) The ratios of fat, protein, reducing sugar and pectin contents decreased with repeating extraction while those of crude fiber, total sugar and 35% alcohol insoluble residue increased when they were compared with total solids.

  • PDF

An Experimental Study on Properties of Polymer Cement Concrete with a Kind of Admixtures (혼화제 종류에 따른 폴리머 시멘트 콘크리트의 특성에 관한 실험적 연구)

  • Chang, Cheol-In;Yoo, Deok-Ryong;Yum, Hwan-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.121-128
    • /
    • 2004
  • This study aims to attain the basic data needed for the adaptation and application of polymer cement concrete as a new construction material by reviewing the various physical characteristics of polymer cement concrete following the changes in polymer type. The research found that cement concrete mixed with polymer, while it had some variation, had excellent qualities in all of compressive strength, tensile strength, water absorption, weight reducing ratio, and resistance of freezing and thawing.

Mechanical behaviour of biocemented sand under triaxial consolidated undrained or constant shear drained conditions

  • Hang, Lei;Gao, Yufeng;He, Jia;Chu, Jian
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.497-505
    • /
    • 2019
  • Biocementation based on the microbially induced calcite precipitation (MICP) process is a novel soil improvement method. Biocement can improve significantly the properties of soils by binding soil particles to increase the shear strength or filling in the pores to reduce the permeability of soil. In this paper, results of triaxial consolidated undrained (CU) tests and constant shear drained (CSD) tests on biocemented Ottawa sand are presented. In the CU tests, the biocemented sand had more dilative behaviour by showing a higher stress-strain curves and faster pore pressure reducing trends as compared with their untreated counterparts. In the CSD tests, the stress ratio q/p' at which biocemented sand became unstable was higher than that for untreated sands, implying that the biocementation will improve the stability of sand to water infiltration or liquefaction.

Development of Microbe Carrier for Bioremediation of Zn, As by using Desulfovibrio Desulfuricans and Zeolite in Artificial Sea Water (Desulfovibrio Desulfuricans과 제올라이트를 이용한 해양 내의 Zn, As 제거용 미생물 담체 개발)

  • Kim, In Hwa;Choi, Jin-Ha;Joo, Jeong Ock;Oh, Byung-Keun
    • KSBB Journal
    • /
    • v.30 no.3
    • /
    • pp.114-118
    • /
    • 2015
  • In this study, we have developed a microbe-carrier that combined Desulfovibrio desulfuricans and zeolite for removal of Zn and As in contaminated seawater. Desulfovibrio desulfuricans, one of the sulfate-reducing bacteria (SRB) microorganism was exhibited stable growth characteristics in highly salted water and strong resistance to Zn and As contaminated seawater. Moreover, zeolites are one of the most useful carrier to remove heavy metals from wastewaters. The results showed that SRB immobilized zeolite carrier can enhance removal ratio of Zn and As. In addition, heavy metals tended to be better removed in medium at conditions of $37^{\circ}C$. In case of heavy metal concentration, they were effectively removed ranging from 50 to 100 ppm. These results show that SRB-zeolite carriers hold great potential to remove cationic heavy metal species from industrial wastewater in marine environment.

An Experimental Study for Improving the Strength of High Strength Concrete with Silica Fume (실리카흄을 혼합한 고강도콘크리트의 강도향상을 위한 실험적 연구)

  • Moon, Han Young;Moon, Dae Joong;Shin, Seung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1069-1080
    • /
    • 1994
  • For complying with the demand of developing high strength concrete, the high strength concrete with higher cement contents and lower water-cement ratio using high range water reducing admixture has been manufactured. In this study, for the purpose of improving the strength of concrete, concrete with silica fume and gypsum was produced so that it was acquired to high compressive strength of $1,058kg/cm^2$, $1,170kg/cm^2$ at age 28 and 91 days, respectively. But neither tensile strength nor modulus of elasticity were highly improved although the compressive strength of the concrete increased. And it was concluded that a higher slump loss of fresh high strength concrete and interior temperature increment of concrete in according to elapsed time than convential concrete should be solved.

  • PDF

Design, analysis, and control of a variable electromotive-force generator with an adjustable overlap between the rotor and the stator

  • Zhu, W.D.;Goudarzi, N.;Wang, X.F.;Kendrick, P.
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.139-150
    • /
    • 2018
  • A variable electromotive-force generator (VEG), which is a modified generator with an adjustable overlap between the rotor and the stator, is proposed to expand the operational range of a regular generator through a simple and robust active control strategy. It has a broad range of applications in hybrid vehicles, wind turbines, water turbines, and similar technologies. A mathematical model of the VEG is developed, and a novel prototype is designed and fabricated. The performance of the VEG with an active control system, which adjusts the overlap ratio based on the desired output power at different rotor speeds for a specific application, is theoretically and experimentally studied. The results show that reducing the overlap between the rotor and the stator of the generator results in reduced torque loss of the generator and an increased rotational speed of the generator rotor. A VEG can improve the fuel efficiency of hybrid vehicles; it can also expand operational ranges of wind turbines and water turbines and harness more power.

Synthesis of Ni-Ag Core-shell Nanoparticles by Polyol process and Microemulsion Process

  • Nguyen, Ngoc Anh Thu;Park, Joseph G.;Kim, Sang-Hern
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2865-2870
    • /
    • 2013
  • Ni-Ag core-shell nanoparticles were synthesized by polyol process and microemulsion technique successfully. In the polyol process, a chemical reduction method for preparing highly dispersed pure nickel and Ag shell formation have been reported. The approach involved the control of reaction temperature and reaction time in presence of organic solvent (ethylene glycol) as a reducing agent for Ag cation with poly(vinyl-pyrrolidone) (PVP. Mw = 40000) as a capping agent. In microemulsion method, the emulsion was prepared by water/cetyltrimetylammonium bromide (CTAB)/cyclohexane. The size of microemulsion droplet was determined by the molar ratio of water to surfactant (${\omega}_o$). The core-shell formation along with the change in structural phase and stability against oxidation at high temperature heat treatments of nanoparticles were investigated by X-ray diffraction and TEM analysis. Under optimum conditions the polyol process gives the Ni-Ag core-shell structures with 13 nm Ni core covered with 3 nm Ag shell, while the microemulsion method gives Ni core diameter of 8 nm with Ag shell of thickness 6 nm. The synthesized Ni-Ag core-shell nanoparticles were stable against oxidation up to $300^{\circ}C$.

Constructed Wetland Design Method to Treat Agricultural Drainage from Tidal Reclaimed Paddy Areas (간척지 논 농업배수 처리에 적합한 인공습지 설계 기법)

  • Jang, Jeong-Ryeol;Shin, Yu-Ri;Jung, Ji-Yeon;Choi, Kang-Won
    • KCID journal
    • /
    • v.18 no.1
    • /
    • pp.4-17
    • /
    • 2011
  • The standard design methodology was suggested to construct wetland system for reducing non-point source pollution from Saemangeum reclaimed paddy land. To set for the design flow and concentrations, runoff and water quality survey were conducted during the irrigation period in 2008 at Gyehwa reclaimed paddy land located at near Saemangeum lake. It is rational that 1ha is the optimum constructed wetland size. To meet this size, the moderate drainage area of reclaimed paddy field was 50ha under the conditions that rainfall is 30mm, average runoff coefficient is 0.83, and runoff capture ratio is 0.6. At these condition, the runoff volume from 50ha was 10,520 $m^3/d$ including base flow during irrigation period. To select the optimum wetland system, several case studies were conducted by focusing on the tidal reclaimed land areas having wetland systems in Seokmun. Pond-Wetland system was selected as the standard model because of showing the highest reduction efficiency. Single variable regression equation were delivered to estimate effluent water concentrations from the designed wetland by using long-term monitoring data from the Seokmun experiment site. The effluent concentration from the designed wetland using these equation were showed moderately range.

  • PDF

Optimization of mineral admixtures and retarding admixture for high-performance concrete by the Taguchi method

  • Chao-Wei Tang
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.185-206
    • /
    • 2023
  • This article aimed to explore the optimization of mineral admixtures and retarding admixture for high-performance concrete. In essence, fresh concrete can be regarded as a mixture in which both coarse and fine aggregates are suspended in a cement-based matrix paste. Based on this view, the test procedure was divided into three progressive stages of binder paste, mortar, and concrete to explore their rheological behavior and mechanical properties respectively. At each stage, there were four experimental control factors, and each factor had three levels. In order to reduce the workload of the experiment, the Taguchi method with an L9(34) orthogonal array and four controllable three-level factors was adopted. The test results show that the use of the Taguchi method effectively optimized the composition of high-performance concrete. The slump of the prepared concrete was above 18 cm, and the slump flow was above 50 cm, indicating that it had good workability. On the other hand, the 28-day compressive strength of the hardened concretes was between 31.3-59.8 MPa. Furthermore, the analysis of variance (ANOVA) results showed that the most significant factor affecting the initial setting time of the fresh concretes was the retarder dosage, and its contribution percentage was 62.66%. On the other hand, the ANOVA results show that the most significant factor affecting the 28-day compressive strength of the hardened concretes was the water to binder ratio, and its contribution percentage was 79.05%.

Antioxidative Ability of Some Produces in Ulleungdo and Quality Characteristics of the Taffy Made from the Produces (울릉도 주요 농업특산물의 항산화능 및 이를 이용하여 제조한 엿의 품질 특성)

  • Kim, Mee-Jung;Lee, Ye-Kyung
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.21 no.1
    • /
    • pp.60-67
    • /
    • 2011
  • This study was conducted to investigate the anti-oxidative abilities of certain products in Ulleungdo, such as sweet pumpkin (Danhobak), goat's beard (Samnamul), and Aster glegni (Bugigangyi), quality characteristics of sweet pumpkin taffy containing these products. Total polyphenolic contents of the Samnamul water and ethanol extracts were 2.95 mg% and 3.57 mg%, respectively, whereas those of the Bugigangyi water and ethanol extracts were 2.77 mg% and 2.75 mg, respectively. However, the total polyphenolic contents of the pumpkin water and ethanol extracts were 0.32 mg%. Reducing power ($OD_{700}$) of the Samnamul and Bugigangyi water and ethanol extracts (0.01%, w/v) was in the range of 1.62~1.91, which was higher compared to those of sweet pumpkin (0.02~0.03). Electron donating abilities (EDA) of the 0.01% Samnamul and Bugigangyi water and ethanol extracts were in the range of 74.91~79.21%, whereas those of the sweet pumpkin water and ethanol extracts were 3.79~14.99%. Optimum mixing ratio of steamed sweet pumpkin and water taffy for the preparation of taffy was 25:75 (w/w), as evaluated by sensory evaluation. Optimum adding ratio of Samanmul and Bugigangyi ethanol extracts to pumpkin taffy were 0.4% and 3%, respectively. However, the adding ratios of Samanmul and Bugigangyi powder to pumpkin taffy were 0.5~1.0% (w/w) and 1% (w/w), respectively.