DOI QR코드

DOI QR Code

Mechanical behaviour of biocemented sand under triaxial consolidated undrained or constant shear drained conditions

  • Hang, Lei (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University) ;
  • Gao, Yufeng (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University) ;
  • He, Jia (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University) ;
  • Chu, Jian (School of Civil and Environmental Engineering, Nanyang Technological University)
  • Received : 2018.10.17
  • Accepted : 2019.02.18
  • Published : 2019.04.10

Abstract

Biocementation based on the microbially induced calcite precipitation (MICP) process is a novel soil improvement method. Biocement can improve significantly the properties of soils by binding soil particles to increase the shear strength or filling in the pores to reduce the permeability of soil. In this paper, results of triaxial consolidated undrained (CU) tests and constant shear drained (CSD) tests on biocemented Ottawa sand are presented. In the CU tests, the biocemented sand had more dilative behaviour by showing a higher stress-strain curves and faster pore pressure reducing trends as compared with their untreated counterparts. In the CSD tests, the stress ratio q/p' at which biocemented sand became unstable was higher than that for untreated sands, implying that the biocementation will improve the stability of sand to water infiltration or liquefaction.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Central Universities, Nanyang Technological University

References

  1. Blauw, M., Lambert, J.W.M. and Latil, M. N. (2009), "Biosealing: A method for in situ sealing of leakages", Proceedings of the International Symposium on Ground Improvement Technologies and Case Histories, Singapore, December.
  2. Chang, I. and Cho, G.C. (2014), "Geotechnical behavior of a beta-1,3/1,6-glucanbiopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647 https://doi.org/10.12989/gae.2014.7.6.633
  3. Chang, I., Im, J., and Cho, G.C. (2016), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj-2015-0475
  4. Cheng, X.H., Ma, Q., Yang, Z., Zhang, Z.C. and Li, M. (2013), "Dynamic response of liquefiable sand foundation improved by bio-grouting", Chin. J. Geotech. Eng., 35(8), 1486-1495.
  5. Chou, C.W., Seagren, E.A., Asce, A.M., Aydilek, A.H., Asce, M. and Lai, M. (2011), "Biocalcification of sand through ureolysis", J. Geotech. Geoenviron. Eng., 137(12), 1179-1189. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000532
  6. Chu, J., Leroueil, S. and Leong, W.K. (2003), "Unstable behaviour of sand and its implication for slope instability", Can. Geotech. J., 40(5), 873-885. https://doi.org/10.1139/t03-039
  7. Chu, J., Stabnikov, V. and Ivanov, V. (2012), "Microbially induced calcium carbonate precipitation on surface or in the bulk of soil", Geomicrobiol. J., 29(6), 544-549, https://doi.org/10.1080/01490451.2011.592929
  8. DeJong, J.T., Fritages, M.B. and Nusslein, K. (2006), "Microbially induced cementation to control sand response to undrained shear", J. Geotech. Geoenviron. Eng., 132(11), 1381-1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381)
  9. Dejong, J.T., Montoya, B.M. and Boulanger, R.W. (2013), "Dynamic response of liquefiable sand improved by microbialinduced calcite precipitation", Geotechnique, 63(4), 302-312. https://doi.org/10.1680/geot.SIP13.P.019
  10. Dejong, J.T., Mortensen, B.M., Martinez, B.C., Nelson, D.C., Jonkers, H.M. and Loosdrecht, M.C.M.V. (2010), "Biomediated soil improvement", Ecol. Eng., 36(2), 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029
  11. DeJong, J.T., Soga, K., Kavazanjian, E., Burns, S.E., Paassen, L.A.V., Al Qabany, A., Aydilek, A., Bang, S.S., Burbank, M., Caslake, L.F., Chen, C.Y., Cheng, X., Chu, J., Ciruli, S., Esnault-Filet, A., Fauriel, S., Hamdan, N., Hata, T., Inagaki, Y., Jefferis, S., Kuo, M., Laloui, L., Larrahondo, J., Manning, D.A.C., Martinez, B., Montoya, B.M., Nelson, D.C., Palomino, A., Renforth, P., Santamarina, J.C., Seagren, E.A., Tanyu, B., Tsesarsky, M. and Weaver, T. (2013), "Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges", Geotechnique, 63(4), 287-301. https://doi.org/10.1680/geot.SIP13.P.017
  12. Dhami, N.K., Sudhakara, Reddy, M.S., and Mukherjee, A. (2013), "Biomineralization of calcium carbonates and their engineered applications: A review", Front. Microbiol., 4(314), 314.
  13. Han, Z.G., Cheng, X.H. and Ma, Q. (2016), "An experimental study on dynamic response for MICP strengthening liquefiable sands", Earthq. Eng. Eng. Vib., 15(4), 673-679. https://doi.org/10.1007/s11803-016-0357-6
  14. He, J. and Chu, J. (2014), "Undrained responses of microbially desaturated sand under monotonic loading", J. Geotech. Geoenviron. Eng., 140(5), 04014003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001082
  15. He, J., Chu, J. and Ivanov, V. (2013), "Mitigation of liquefaction of saturated sand using biogas", Geotechnique, 63(4), 267-275. https://doi.org/10.1680/geot.SIP13.P.004
  16. He, J., Chu, J., Liu, H.L., Gao, Y.F. and Li, B. (2016), "Research advances in biogeotechnologies", Chin. J. Geotech. Eng., 38(4), 643-653.
  17. Ivanov, V. and Chu, J. (2008), "Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ", Rev. Environ. Sci. Biotechnol., 7(2), 139-153. https://doi.org/10.1007/s11157-007-9126-3
  18. Jeon, M.K., Kwon, T.H., Park, J.S. and Shin, J.H. (2017), "In situ viscoelastic properties of insoluble and porous polysaccharide biopolymer dextran produced by Leuconostoc mesenteroides using particle-tracking microrheology", Geomech. Eng., 12(5), 849-862. https://doi.org/10.12989/gae.2017.12.5.849
  19. Kim, D. and Park, K. (2017), "Evaluation of the grouting in the sandy ground using bio injection material", Geomech. Eng., 12(5), 739-752. https://doi.org/10.12989/gae.2017.12.5.739
  20. Kim, Y.M., Kwon, T.H. and Kim, S. (2017), "Measuring elastic modulus of bacterial biofilms in a liquid phase using atomic force microscopy", Geomech. Eng., 12(5), 863-870. https://doi.org/10.12989/gae.2017.12.5.863
  21. Kwon, T.H., and Ajo-Franklin, J. (2013), "High-frequency seismic response during permeability reduction due to biopolymer clogging in unconsolidated porous media", Geophysics, 78(6), 117-127.
  22. Lin, H., Suleiman, M.T., Brown, D.G. and Kavazanjian, E. (2016), "Mechanical behavior of sands treated by microbially induced carbonate precipitation", J. Geotech. Geoenviron. Eng., 142(2), 04015066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383
  23. Liu, L., Liu, H., Stuedlein, A.W., Evans, T.M. and Xiao, Y. (2019), "Strength, stiffness, and microstructure characteristics of biocemented calcareous sand", Can. Geotech. J.
  24. Lourenco, S.D.N., Wang, G.H. and Chu, J. (2011), "Aspects of sand behaviour by modified constant shear drained tests", Environ. Earth Sci., 62(4), 865-870. https://doi.org/10.1007/s12665-010-0573-8
  25. Montoya, B.M. and Dejong, J.T. (2015), "Stress-strain behavior of sands cemented by microbially induced calcite precipitation", J. Geotech. Geoenviron. Eng., 141(6), 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302
  26. O'Donnell, S.T. and Kavazanjian, E. (2015), "Stiffness and dilatancy improvements in uncemented sands treated through MICP", J. Geotech. Geoenviron. Eng., 141(11), 02815004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001407
  27. Sasaki, T. and Kuwano, R. (2016), "Undrained cyclic triaxial testing on sand with non-plastic fines content cemented with microbially induced $CaCO_{3}$", Soil. Found., 56(3), 485-495. https://doi.org/10.1016/j.sandf.2016.04.014
  28. Sidik, W.S., Canakci, H., Kilic, I.H. and Celik, F. (2014), "Applicability of biocementation for organic soil and its effect on permeability", Geomech. Eng., 7(6), 649-663. https://doi.org/10.12989/gae.2014.7.6.649
  29. Tang, Q., Gu, F., Gao, Y., Toru, I. and Takeshi, K. (2018b), "Desorption characteristics of cr(iii), mn(ii), and ni(ii) in contaminated soil using citric acid and citric acid-containing wastewater", Soil. Found., 58(1), 50-64. https://doi.org/10.1016/j.sandf.2017.12.001
  30. Tang, Q., Gu, F., Zhang, Y., Zhang, Y. and Mo, J. (2018a), "Impact of biological clogging on the barrier performance of landfill liners", J. Environ. Manage., 222, 44-53. https://doi.org/10.1016/j.jenvman.2018.05.039
  31. Xiao, P., Liu, H., Xiao, Y., Stuedlein, A.W. and Evans, T.M. (2018), "Liquefaction resistance of bio-cemented calcareous sand", Soil Dyn. Earthq. Eng., 107, 9-19. https://doi.org/10.1016/j.soildyn.2018.01.008

Cited by

  1. Enzyme induced carbonate precipitation for soil internal erosion control under water seepage vol.26, pp.3, 2019, https://doi.org/10.12989/gae.2021.26.3.289
  2. Seismic earth pressure on embankment gravity retaining wall with nonuniform slope vol.26, pp.5, 2021, https://doi.org/10.12989/gae.2021.26.5.415