DOI QR코드

DOI QR Code

Synthesis of Ni-Ag Core-shell Nanoparticles by Polyol process and Microemulsion Process

  • Nguyen, Ngoc Anh Thu (Department of Applied Chemistry, Hanbat National University) ;
  • Park, Joseph G. (Taejon Christian International School (TCIS)) ;
  • Kim, Sang-Hern (Department of Applied Chemistry, Hanbat National University)
  • Received : 2013.05.14
  • Accepted : 2013.07.01
  • Published : 2013.10.20

Abstract

Ni-Ag core-shell nanoparticles were synthesized by polyol process and microemulsion technique successfully. In the polyol process, a chemical reduction method for preparing highly dispersed pure nickel and Ag shell formation have been reported. The approach involved the control of reaction temperature and reaction time in presence of organic solvent (ethylene glycol) as a reducing agent for Ag cation with poly(vinyl-pyrrolidone) (PVP. Mw = 40000) as a capping agent. In microemulsion method, the emulsion was prepared by water/cetyltrimetylammonium bromide (CTAB)/cyclohexane. The size of microemulsion droplet was determined by the molar ratio of water to surfactant (${\omega}_o$). The core-shell formation along with the change in structural phase and stability against oxidation at high temperature heat treatments of nanoparticles were investigated by X-ray diffraction and TEM analysis. Under optimum conditions the polyol process gives the Ni-Ag core-shell structures with 13 nm Ni core covered with 3 nm Ag shell, while the microemulsion method gives Ni core diameter of 8 nm with Ag shell of thickness 6 nm. The synthesized Ni-Ag core-shell nanoparticles were stable against oxidation up to $300^{\circ}C$.

Keywords

References

  1. Chen, D. H.; Wang, S. R. Materials Chemistry and Physics 2006, 100, 468. https://doi.org/10.1016/j.matchemphys.2006.01.027
  2. Lee, C. C.; Chen, D. H. Applied Physics Letters 2007, 90, 193102. https://doi.org/10.1063/1.2731706
  3. Wang, H.; Kou, X.; Zhang, J.; Li, J. Bull. Mater. Sci. 2008, 31(1),97. https://doi.org/10.1007/s12034-008-0017-1
  4. Chen, D. H.; Wu, S. H. Chem. Mater. 2000, 12, 1354. https://doi.org/10.1021/cm991167y
  5. Toshima, Y.; Hayashi, T.; Yamaguchi, Y.; Shimamura, H. U.S Patent, 6,632,524, 2003.
  6. Chen, D.; Liu, S.; Li, J.; Zhao, N.; Shi, C.; Dua, X.; Sheng, J. Journal of Alloys and Compounds 2009, 475, 494. https://doi.org/10.1016/j.jallcom.2008.07.115
  7. Bala, T.; Swami, A.; Prasad, B. L. V.; Sastry, M. Journal of Colloid and Interface Science 2005, 283, 422. https://doi.org/10.1016/j.jcis.2004.09.018
  8. Chen, D. H.; Hsieh, C. H. J. Mater. Chem. 2002, 12, 2412. https://doi.org/10.1039/b200603k
  9. Joshi, R.; Mukherjee, T. Radiation Physics and Chemistry 2003, 66, 397. https://doi.org/10.1016/S0969-806X(02)00475-9
  10. Chiu, H. K.; Chiang, I. C.; Chen, D. H. J. Nanopart. Res. 2009, 11, 1137. https://doi.org/10.1007/s11051-008-9506-9
  11. Lopez, F.; Cinelli, G.; Ambrosone, L.; Colafemmina, G.; Ceglie, A.; Palazzo, G. Colloids and Surface A: Physicochem. Eng. Aspects 2004, 237, 49. https://doi.org/10.1016/j.colsurfa.2004.01.027
  12. Chen, D.; Li, J.; Shi, C.; Du, X.; Zhao, N.; Sheng, J.; Liu, S. Chem. Mater 2007, 19, 3399. https://doi.org/10.1021/cm070182x
  13. Capek, I. Advances in Colloids and Interface Science 2004, 110,49. https://doi.org/10.1016/j.cis.2004.02.003
  14. Li, X.; He, G.; Zheng, W.; Xiao, G. Colloids and Surfaces A: Physicochem, Eng. Aspects 2010, 360, 150. https://doi.org/10.1016/j.colsurfa.2010.02.026
  15. Gan, L. M.; Chieng, T. H.; Chew, C. H.; Ng, S. C. Langmuir 1994, 10, 4022. https://doi.org/10.1021/la00023a020
  16. Ganesh, V.; Lakshminarayanan, V. Journal of Colloids and Interface Science 2010, 349, 300. https://doi.org/10.1016/j.jcis.2010.05.014
  17. Zhang, W.; Qiao, X.; Chen, J. Materials Science and Engineering B 2007, 142, 1. https://doi.org/10.1016/j.mseb.2007.06.014
  18. Valiente, M.; Rodenas, E. Colloid Polym. Sci. 1993, 271, 494.. https://doi.org/10.1007/BF00657394
  19. Chen, M.; Zhou, J.; Xie, L.; Gu, G.; Wu, L. J. Phys. Chem. C 2007, 111(32), 11829. https://doi.org/10.1021/jp0711085

Cited by

  1. The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions vol.47, pp.14, 2018, https://doi.org/10.1039/C7CS00777A
  2. Metallic core-shell nanoparticles for conductive coatings and printing vol.299, pp.None, 2013, https://doi.org/10.1016/j.cis.2021.102578