• Title/Summary/Keyword: warranty period

Search Result 116, Processing Time 0.023 seconds

Warranty Analysis Based on Different Lengths of Warranty Periods

  • Park, Min-Jae
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.3
    • /
    • pp.277-286
    • /
    • 2011
  • Global companies can sell their products with dierent warranty periods based on location and times. Customers can select the length of warranty on their own if they pay an additional fee. In this paper, we consider the warranty period and the repair time limit as random variables. A two-dimensional warranty policy is considered with repair times and failure times. The repair times are considered within the repair time limit and the failure times are considered within the warranty period. Under the non-renewable warranty policy, we obtain the expected number of warranty services and their variances in the censored area by warranty period and repair time limit to conduct a warranty cost analysis. Numerical examples are discussed to demonstrate the applicability of the methodologies and results using field data based on the proposed approach in the paper.

Extended warranty model under minimal repair-replacement warranty policy

  • Jung, Ki Mun
    • International Journal of Reliability and Applications
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • In this paper, we study an extended warranty model under minimal repair-replacement warranty (MRRW) which is suggested by Park, Jung and Park (2013). Under MRRW policy, the manufacturer is responsible for providing the minimal repair-replacement services upon the system failures during the warranty period. And if the failure occurs during the extended warranty period, only the minimal repair is conducted. Following the expiration of extended warranty, the user is solely responsible for maintaining the system for a fixed length of time period and replaces the system at the end of such a maintenance period. During the maintenance period, only the minimally repair is given for each system failure. The main purpose of this article is to suggest the extended warranty and replacement model with MRRW. Given the cost structures incurred during the life cycle of the system, we formulate the expected cost and the expected length of life cycle to obtain the expected cost rate.

  • PDF

Estimation of a Product Replacement Ratio During the Warranty Period for a Warranty Analysis (보증분석을 위한 품질보증 기간 중 제품 교체율 추정 사례 연구)

  • Ahn, Hae-Il
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.71-79
    • /
    • 2012
  • In this paper, an evaluation of a product replacement ratio of irreparable items to the normally working ones is performed with a view to a warranty analysis. It is demonstrated that the replacement ratio during the warranty period can be estimated from the field data collected during the period of operation, and one can provide the management with a useful information regarding the appropriateness for the warranty period, which is vital to the product marketing strategy. Although warranty data usually take the form of multiply right censored interval data, the conventional reliability analysis method seems to be good enough as in this case. More sophisticated method such as warranty cost analysis and 2-dimensional warranty analysis is yet desired.

Replacement model under warranty with age-dependent minimal repair

  • Park, Minjae
    • International Journal of Reliability and Applications
    • /
    • v.18 no.1
    • /
    • pp.9-20
    • /
    • 2017
  • In this paper, we consider a renewable repair-replacement warranty strategy with age-dependent minimal repair service and propose an optimal maintenance model during post-warranty period. Such model implements the repair time limit under warranty and follows with a certain form of system maintenance strategy when the warranty expires. The expected cost rate is investigated per unit time during the life period of the system as for the standard for optimality. Based on the cost design defined for each failure of the system, the expected cost rate is derived during the life period of the system, considering that a renewable minimal repair-replacement warranty strategy with the repair time limit is provided to the customer under warranty. When the warranty is finished, the maintenance of the system is the customer's responsibility. The life period of the system is defined and the expected cost rate is developed from the viewpoint of the customer's perspective. We obtain the optimal maintenance strategy during the maintenance period by minimizing such a cost rate after a warranty expires. Numerical examples using field data are shown to exemplify the application of the methodologies proposed in this paper.

  • PDF

Cost Analysis and Period Determination in Stepdown Warranty Policy (단계별 보증제도에서의 비용분석 및 보증기간 설정)

  • Kim, Jae-Jung;Jang, Jung-Sun;Kim, Won-Jung
    • Journal of Korean Society for Quality Management
    • /
    • v.20 no.1
    • /
    • pp.39-47
    • /
    • 1992
  • This paper is concerned with cost analysis and determination of warranty period in a stepdown warranty policy. Manufacturer's warranty cost is analyzed for nonrepairable item, where the warranty is assumed to be renewed at any failure within the warranty period. It is shown that from this result in free replacement policy, pro-rata policy and hybrid policy can be easily calculated. The method of determining optimal warranty period is also explored.

  • PDF

Warranty cost modeling using the parametric method

  • Park, Min-Jae
    • Journal of Applied Reliability
    • /
    • v.11 no.1
    • /
    • pp.43-57
    • /
    • 2011
  • In the paper, we consider two-dimensional warranty policy with failure times and repair times. The failure times are considered within the warranty period and the repair times are considered within the repair time limit. Under the renewable warranty policy and non-renewable warranty policy, we consider the number of warranty services in the censored area by warranty period and repair time limit to conduct warranty cost analysis. We investigate the field data to check their dependency and implement our proposed approaches to conduct warranty cost analysis using the parametric methods. Numerical examples are discussed to demonstrate the applicability of the methodologies and results based on the proposed approach in the paper.

Optimal Preventive Maintenance Policy for Products Sold Under Warranty (보증하에 판매되는 제품의 적정 예방정비 계획)

  • Chun, Young-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.15 no.2
    • /
    • pp.87-91
    • /
    • 1989
  • A warranty is a contractual obligation incurred by a producer in connection with the sale of a product. The warranty specifies that producer agrees to remedy certain failures in the product sold. There have been many articles dealing with warranties, but they have studied about optimal warranty cost for the warranty period. In this study, an optimal preventive maintenance time interval is computed. The optimal preventive maintenance time interval minimizing warranty cost for the warranty period is discussed. It is assumed that failure rate is increasing and the failure rate after preventive maintenance or corrective maintenance lies between good as new and bad as old.

  • PDF

Cost Analysis of Manufacturer Under the Free Replacement, Pro-rata, Hybrid and Stepdown Warranty Policy (단계별 사후보증제도와 무료, 비율, 혼합형 보증제도에서 제조업자 입장의 비용분석)

  • 김원중;김재중
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.12 no.20
    • /
    • pp.39-45
    • /
    • 1989
  • This article is concerned with cost analysis in product warranty policy. The warranty cost can be different according to warranty rate and warranty renewal policy. In this paper the stepdown warranty is used. The warranty renewal policy is considered when the warranty is received upon free replacement period as item failing. Assuming the non repairable item as one item is sold, investigated manufacturer's cost in stepdown warranty policy. Also manufacturer's cost is calculated in the free replacement. pro-rata. hybrid policy. Numerical example is given over Weibull time to failure distribution, comparing stepdown warranty policy with free replacement, pro-rata, hybrid one in the manufacturer's point of view. The sensitivity analysis of warranty cost according to the number of warranty period step is included.

  • PDF

Estimation of Warranty Cost (품질하자보증비의 추정)

  • 최정호;이상용
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.357-364
    • /
    • 1997
  • After the buyer purchases the product, the seller's role does not end. If the product fails to function properly before the end of the warranty period, the seller is responsible for its repair or replacement under the seller's warranty policy. There are two common types of warranty policies: the free replacement warranty and the rebate warranty. Under the free replacement warranty policy, replacement or repairs during the warranty period are provided by the seller free of charge to the buyer. Under the rebate warranty policy, a failed item is replaced by a new one or is repaired at a cost to the age of the failed item. The rebate warranty is most often used for items such as a battery or an automobile tire which wear out and must be replaced at failure. This paper proposes a easy way of estimating the warranty cost under the free replacement warranty policy assuming an exponential product failure function on repairable products.

  • PDF

Optimal Replacement Policy for a Repairable System with Combination Warranty (혼합보증이 있는 수리 가능한 시스템에 대한 최적의 교체정책)

  • 정기문
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.1
    • /
    • pp.107-117
    • /
    • 2002
  • In this paper we present the optimal replacement policies following the expiration of combination warranty. We consider two types of combination warranty policies: renewing warranty and non-renewing warranty. The criterion used to determine the optimal replacement period is the expected cost rate per unit time from the user'perspective. The optimal maintenance period following the expiration of combination warranty is obtained. Some numerical examples are presented for illustrative purpose.