• Title/Summary/Keyword: wafer aligner

Search Result 14, Processing Time 0.022 seconds

Development of The 3-channel Vision Aligner for Wafer Bonding Process (웨이퍼 본딩 공정을 위한 3채널 비전 얼라이너 개발)

  • Kim, JongWon;Ko, JinSeok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.29-33
    • /
    • 2017
  • This paper presents a development of vision aligner with three channels for the wafer and plate bonding machine in manufacturing of LED. The developed vision aligner consists of three cameras and performs wafer alignment of rotation and translation, flipped wafer detection, and UV Tape detection on the target wafer and plate. Normally the process step of wafer bonding is not defined by standards in semiconductor's manufacturing which steps are used depends on the wafer types so, a lot of processing steps has many unexpected problems by the workers and environment of manufacturing such as the above mentioned. For the mass production, the machine operation related to production time and worker's safety so the operation process should be operated at one time with considering of unexpected problem. The developed system solved the 4 kinds of unexpected problems and it will apply on the massproduction environment.

  • PDF

Algorithm and control of aligners (Aligner 알고리즘 및 제어)

  • 박종현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.981-986
    • /
    • 1993
  • A fast algorithm based upon geometry to measure the wafer center and the position of a wafer fiducial mark is developed and implemented on a single-axis aligner. Design issues for a controller when a National Semiconductor's LM629 is used as a PID controller of an aligner are discussed. Performance of an aligner with the algorithm and a LM629 was measured in experiments. The result shows that it takes about 4.1 seconds on average to align a hot wafer supported by metal pins on the chuck.

  • PDF

Implementation of SECS/GEM Communication Protocol for Wafer Aligner (웨이퍼 정렬기의 SECS/GEM통신 구현 및 운용시험)

  • Jo, Jae-Geun;Park, Hong-Lae;Lyou, Joon
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2553-2556
    • /
    • 2003
  • In the semiconductor equipment industry, the SECS/GEM protocol has been recognized as the communication standard, but in our 300mm wafer aligner being developed, this capability has not been equipped yet. In this study, we present the realization of SECS-I, SECS-II and HSMS communication protocol between factory host computer and wafer aligner. Its validity is shown in actual test environment.

  • PDF

A Wafer Alignment Method and Accuracy Evaluation (웨이퍼 정렬법과 정밀도 평가)

  • Park, Hong-Lae;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.812-817
    • /
    • 2002
  • This paper presents a development of high accuracy aligner and describes a method to find the orientation of a substantially circular disk shaped wafer with at least one flat region on an edge thereof. In the developed system, the wafer is spun one 360 degree turn on a chuck and the edge position is measured by a linear array to obtain a set of data points at various wafer orientation. The rotation axis may differ from wafer center by an unknown eccentricity. The flat angle is found by fitting a cosine curve to the actual data to obtain a deviation. The maximum deviation is then corrected for errors due to a finite number of data points and wafer eccentricity by calculating an adjustment angle from data points on the wafer fiat. After determining the flat angle the wafer is spun to the desired orientation. The wafer eccentricity can be calculated from four of the data points located away from the flat edge region. and the wafer is then centered.

A Wafer Pre-Alignment System Using One Image of a Whole Wafer (하나의 웨이퍼 전체 영상을 이용한 웨이퍼 Pre-Alignment 시스템)

  • Koo, Ja-Myoung;Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.47-51
    • /
    • 2010
  • This paper presents a wafer pre-alignment system which is improved using the image of the entire wafer area. In the previous method, image acquisition for wafer takes about 80% of total pre-alignment time. The proposed system uses only one image of entire wafer area via a high-resolution CMOS camera, and so image acquisition accounts for nearly 1% of total process time. The larger FOV(field of view) to use the image of the entire wafer area worsen camera lens distortion. A camera calibration using high order polynomials is used for accurate lens distortion correction. And template matching is used to find a correct notch's position. The performance of the proposed system was demonstrated by experiments of wafer center alignment and notch alignment.

A Wafer Pre-Alignment System Using a High-Order Polynomial Transformation Based Camera Calibration (고차 다항식 변환 기반 카메라 캘리브레이션을 이용한 웨이퍼 Pre-Alignment 시스템)

  • Lee, Nam-Hee;Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.11-16
    • /
    • 2010
  • Wafer Pre-Alignment is to find the center and the orientation of a wafer and to move the wafer to the desired position and orientation. In this paper, an area camera based pre-aligning method is presented that captures 8 wafer images regularly during 360 degrees rotation. From the images, wafer edge positions are extracted and used to estimate the wafer's center and orientation using least squares circle fitting. These data are utilized for the proper alignment of the wafer. For accurate alignments, camera calibration methods using high order polynomials are used for converting pixel coordinates into real-world coordinates. A complete pre-alignment system was constructed using mechanical and optical components and tested. Experimental results show that alignment of wafer center and orientation can be done with the standard deviation of 0.002 mm and 0.028 degree, respectively.

Pre-Alignment Using the Least Square Circle Fitting (Least Square Circle Fitting을 이용한 Pre-Alignment)

  • Lee, Nam-Hee;Cho, Tai-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.410-413
    • /
    • 2009
  • Wafer pre-alignment is to find the center and the orientation of a wafer and to move the wafer to the desired position and orientation. In this paper, an area camera based pre-aligning method is presented that captures 8 wafer images regularly during 360 degrees rotation. From the images, wafer edge positions are extracted and used to estimate the wafer's center and orientation using least square circle fitting. These information are utilized for the proper alignment of the wafer.

  • PDF

A Study on the Development of Wafer Notch Aligner (노치형 웨이퍼 정렬기 개발에 관한 연구)

  • Na, Won-Shik
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.412-418
    • /
    • 2009
  • This study aims to develop a system that enables 20 to 25 wafers to be automatically aligned at the position of the corresponding serial number and facilitates the checkout of wafer processing by sensing them before and after semiconductor processing. It also suggests compensation algorithm and stepper motor control algorithm that carefully align notches. This study minimizes the rate of occurrence by adopting materials of which the surface has proper coefficient of friction when wafers are rotating and that do not rarely produce particles. This study completed the development of a slip resistance apparatus and carried out performance tests through mathematical verification. This system is expected to improve semiconductor yield due to anti-pollution technology in semiconductor processing and can be selectively applied to a large size wafer over 450mm in the future.

  • PDF

Direct Bonding of Si || SiO2/Si3N4 || Si Wafer Pairs With a Furnace (전기로를 이용한 Si || SiO2/Si3N4 || Si 이종기판쌍의 직접접합)

  • Lee, Sang-Hyeon;Lee, Sang-Don;Seo, Tae-Yun;Song, O-Seong
    • Korean Journal of Materials Research
    • /
    • v.12 no.2
    • /
    • pp.117-120
    • /
    • 2002
  • We investigated the possibility of direct bonding of the Si ∥SiO$_2$/Si$_3$N$_4$∥Si wafers for Oxide-Nitride-Oxide(ONO) gate oxide applications. 10cm-diameter 2000$\AA$-thick thermal oxide/Si(100) and 500$\AA$-Si$_3$N$_4$LPCVD/Si (100) wafers were prepared, and wet cleaned to activate the surface as hydrophilic and hydrophobic states, respectively. Cleaned wafers were premated wish facing the mirror planes by a specially designed aligner in class-100 clean room immediately. Premated wafer pairs were annealed by an electric furnace at the temperatures of 400, 600, 800, 1000, and 120$0^{\circ}C$ for 2hours, respectively. Direct bonded wafer pairs were characterized the bond area with a infrared(IR) analyzer, and measured the bonding interface energy by a razor blade crack opening method. We confirmed that the bond interface energy became 2,344mJ/$\m^2$ when annealing temperature reached 100$0^{\circ}C$, which were comparable with the interface energy of homeogenous wafer pairs of Si/Si.

Formation of high uniformity solder bump for wafer level package by tilted electrode ring (경사진 전극링에 의한 웨이퍼레벨패키지용 고균일도의 솔더범프 형성)

  • Ju, Chul-Won;Lee, Kyung-Ho;Min, Byoung-Gue;Kim, Seong-Il;Lee, Jong-Min;Kang, Young-Il;Han, Byung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.366-369
    • /
    • 2003
  • The vertical fountain plating system with the point contact has been used in semiconductor industry. But the plating shape in the opening of photoresist becomes gradated shape, because bubbles from the wafer surface are difficult to escape from the deep openings, vias. So, we designed the tilted electrode ring contact to get uniform bump height on all over the wafer and evaluated the film uniformity by SEM and $\alpha$-step. A photoresist was coated to a thickness of $60{\mu}m$ and vias were patterned by a contact aligner After via opening, solder layer was electroplated using the fountain plating system and the tilted electrode ring contact system. In $\alpha$-step measurement, film uniformities in the fountain plating system and the tilted electrode ring contact system were ${\pm}16%,\;{\pm}3.7%$ respectively. In this study, we could get high uniformity bumps by the tilted electrode ring contact system. So, tilted electrode ring contact system is expected to improve workability and yield in module process.

  • PDF