DOI QR코드

DOI QR Code

Direct Bonding of Si || SiO2/Si3N4 || Si Wafer Pairs With a Furnace

전기로를 이용한 Si || SiO2/Si3N4 || Si 이종기판쌍의 직접접합

  • Lee, Sang-Hyeon (Dept.of Materials Sciences & Engineering, University of Seoul) ;
  • Lee, Sang-Don (Dept.of Materials Sciences & Engineering, University of Seoul) ;
  • Seo, Tae-Yun (Dept.of Materials Sciences & Engineering, University of Seoul) ;
  • Song, O-Seong (Dept.of Materials Sciences & Engineering, University of Seoul)
  • 이상현 (서울시립대학교 재료공학과) ;
  • 이상돈 (서울시립대학교 재료공학과) ;
  • 서태윤 (서울시립대학교 재료공학과) ;
  • 송오성 (서울시립대학교 재료공학과)
  • Published : 2002.02.01

Abstract

We investigated the possibility of direct bonding of the Si ∥SiO$_2$/Si$_3$N$_4$∥Si wafers for Oxide-Nitride-Oxide(ONO) gate oxide applications. 10cm-diameter 2000$\AA$-thick thermal oxide/Si(100) and 500$\AA$-Si$_3$N$_4$LPCVD/Si (100) wafers were prepared, and wet cleaned to activate the surface as hydrophilic and hydrophobic states, respectively. Cleaned wafers were premated wish facing the mirror planes by a specially designed aligner in class-100 clean room immediately. Premated wafer pairs were annealed by an electric furnace at the temperatures of 400, 600, 800, 1000, and 120$0^{\circ}C$ for 2hours, respectively. Direct bonded wafer pairs were characterized the bond area with a infrared(IR) analyzer, and measured the bonding interface energy by a razor blade crack opening method. We confirmed that the bond interface energy became 2,344mJ/$\m^2$ when annealing temperature reached 100$0^{\circ}C$, which were comparable with the interface energy of homeogenous wafer pairs of Si/Si.

Keywords

References

  1. M. Shimbo, K. Furukawa, K. Fukuda, K. Tanzawa, J. Appl. Phys. Vol. 60(8) 2987 (1986) https://doi.org/10.1063/1.337750
  2. J.B. Lasky, Appl. Phys. Lett. Vol.48, 78 (1986) https://doi.org/10.1063/1.96768
  3. Q.-Y. Tong, and U. Goesele, Semiconductor Wafer Bonding : Science and Technology, New York, John Wiley & Sons, (1999)
  4. V. Lehmann, K. Mitani, R. Stengl, T. Mii, and U. Goesele, Jpn. J. Appl. Phys. 28, L2141 (1989) https://doi.org/10.1143/JJAP.28.L2141
  5. M. Bruel, B. Aspar, and A. J. Auberton-Herve, Jpn. J. Appl. Phys. 36, 1636 (1997) https://doi.org/10.1143/JJAP.36.1636
  6. J. Robertson, M.J. Powell, Apply. Phys. Lett. 44, 415 (1984) https://doi.org/10.1063/1.94794
  7. S. Santucci, L. Lozzi, M. Passacantando, A.R. Phani. E. Palumbo, G. Bracchitta, R. De Tommasis, A. Torsi, R. Alfonsetti, and G. Moccia, J. Non-Cryst. Solids, 245, 224 (1999) https://doi.org/10.1016/S0022-3093(98)00886-2
  8. H. Tanaka, H. Uchida, T. Ajioka, and N. Hirashita, IEEE Trans. Elec. Dev. 40, 2331 (1993)
  9. S. Santucci, R. Alfonsetti, A. Di Giacomo, P. Fiorani, L. Lozzi, G. Moccia, L. Ottaviano, M. Passacantando, and P. Picozzi, J. Non-Cryst. Solids 216, 156 (1997) https://doi.org/10.1016/S0022-3093(97)00209-3
  10. R. Stengl, T. Tan, and U. Gosele, Jpn. J. Appl. Phys. Vo. 28, No. 10, 969 (1989)
  11. Y. Backlund, K. Hermansson, and L. Smith, J. Electrochem. Soc, 139(8), 2299 (1992) https://doi.org/10.1149/1.2221218
  12. T. Martini, J. Steinkirchner, und U. Gosele, J. Electrochem. Soc, 31(1), 3549 (1997)
  13. J.W. Lee, PhD. thesis (Seoul National University (1999))
  14. J. Haisma, T. M. Michielsen, and Gijsbertus A.C.M. Spierings, Jpn. J. Appl. Phys., Vol. 28, No. 5, L725 (1989) https://doi.org/10.1143/JJAP.28.L725