• 제목/요약/키워드: vibrational motion

검색결과 133건 처리시간 0.023초

유체유동을 갖는 회전 외팔 파이프의 동특성에 미치는 끝단질량의 영향 (The Influence of Tip-mass on Dynamic Characteristics of Rotating Cantilever Pipe Conveying Fluid)

  • 윤한익;최창수;손인수
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1824-1830
    • /
    • 2003
  • The vibrational system of this study is consisted of a rotating cantilever pipe conveying fluid and the tip mass. The equation of motion is derived by using the Lagrange equation. The influences of the rotating angular velocity and the velocity of fluid flow in a cantilever pipe have been studied on the dynamic characteristics of a rotating cantilever pipe by the numerical method. The effects of a tip mass on the dynamic response of a cantilever pipe are also studied. The tip-amplitude and maximum tip-deflection of each direction are directly proportional to the tip mass of the cantilever pipe in steady state. It identifies that the influence of the fluid velocity and the rotating angular velocity of the cantilever pipe give much variation the bending tip-displacement of steady state and the bending tip-displacement of non-steady state, respectively. The influence of the rotating angular velocity gives much the deflection of axial direction.

회전하는 유체이송 외팔 파이프의 동특성 해석 (The Dynamic Characteristics of Rotating Cantilever Pipe Conveying Fluid)

  • 윤한익;손인수
    • 한국소음진동공학회논문집
    • /
    • 제13권1호
    • /
    • pp.26-32
    • /
    • 2003
  • The vibrational system of this study is consisted of a rotating cantilever pipe and the flow in the pipe. The equation of motion is derived by using Lagrange equation. The influences of the rotating angular velocity and the velocities of fluid flow in the pipe have been studied on the dynamic characteristics of a rotating cantilever pipe by numerical method. The tip-amplitude of axial vibration and maximum tip-deflection of axial direction of cantilever pipe are directly proportional to the velocity of fluid and rotating angular velocity of pipe In the steady state. respectively The bending tip-amplitude of cantilever pipe is inversely proportional to the velocity of fluid in the steady state. When the rotating angular velocity is 5 rad/s, the velocity of fluid increase with increasing the natural frequency of axial vibration at second mode and third mode, but the natural frequency axial direction of first mode is decreased. The natural frequency of lateral direction is decreased due to increase of the rotating angular velocity. It identifies that the Influence of velocity of fluid give much variation lower mode of vibration in lateral direction. And the Influence of velocity of fluid give much variation higher mode of vibration in axial direction.

3축 구동이 가능한 Slim형 Pick-Up Actuator 개발 및 동특성 분석 (A Study on Dynamic Characteristics of 3-axis Actuator for the Slim Type Pick-Up)

  • 박관우;서민석;홍삼열;김영중;최인호;김진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.373-377
    • /
    • 2002
  • In this study, we suggested a slim-type actuator that can be controlled in radial direction for compensating coma aberration in high-capacity optical storage devices. To deal successfully with narrow space in slim-type optical pick-up for notebook pc device, additional yokes for tilting motion are integrated into main yoke of the actuator. And the location of tilting coils is determined for mass-b3lancing effect to achieve optimal configuration for high driving sensitivity. We also suggested new concept of lens holder to guarantee excellent stability of control system by enhancing the gain margin at secondary resonant frequency. The concept was realized by forming damping sections in the lens holder, which prevent vibrational energy from transferring to lens. An exclusive measurement system was newly developed for fast and precise measurement of dynamic characteristics of actuators and utilized for the practical use. We hope to make good use of this system also in time to come.

  • PDF

초기응력을 받는 직사각형판의 고유진동수 산정식 개발 (Equation for Estimating Natural Frequencies of Initially Stressed Rectangular Plates)

  • 박승진
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권1호
    • /
    • pp.150-159
    • /
    • 2014
  • 본 논문은 초기하중을 받는 직사각형판 및 역대칭 Angle-Ply 적층판의 좌굴 및 진동특성을 무재하시의 고유진동수를 이용하여 산정하는 간편법을 제시하였다. 마주보는 두변이 단순지지된 직사각형판의 운동방정식은 곡률항을 고려한 Mindlin 판이론과 에너지원리를 이용한 Rayleigh-Ritz법을 이용하여 유도하였다. 초기응력을 받는 직사각형판의 무차원화 고유진동수, 임계좌굴계수 및 동적불안정영역 문제들을 무재하시의 무차원화 고유진동수로서 각각의 특성을 정립하였다. 본 연구에서 제안한 진동특성에 관한 간편산정식의 타당성과 사용성을 입증하기 위해 수치예를 들어 검토하였다.

이동질량들을 가진 단순지지된 유체유동 파이프의 동특성 (Dynamic Behavior of a Simply Supported Fluid Flow Pipe with Moving Masses)

  • 윤한익;임순홍
    • 한국소음진동공학회논문집
    • /
    • 제12권2호
    • /
    • pp.132-140
    • /
    • 2002
  • A simply supported pipe conveying fluid and the moving masses upon it constitute this vibrational system. The equation of motion is derived by using Lagrange's equation. The influence of the velocity and the inertia force of the moving masses and the velocities of fluid flow in the pipe have been studied on the dynamic behavior of a simply supported pipw by numerical method. The velocities of fluid flow are considered within its critical values of the simply supported pipe without the moving masses upon it. Their coupling effects on the transverse vibration of a simply supported pipe are inspected too. The dynamic deflection of the simply supported pipe conveying fluid is increased by a coupling of the moving masses and the velocities of the moving masses and the fluid flow. When four or five regular interval masses move on the simply supported pipe conveying fluid, the amplitude of the simply supported pipe conveying fluid is small at low velocity of the masses, but at high velocity of the masses the deflection of midspan of the pipe is increased by coupling with the numbers and magnitude of the masses. The time which produce the maximum dynamic deflection of the simply supported pipe is delayed according to the increment of the number of moving masses.

단순지지 송수관의 동특성에 미치는 이동질량의 영향 (Influence of a Moving Mass on Dynamic Behavior of a Simply Supported Pipe Conveying Fluid)

  • 윤한익
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.135-140
    • /
    • 2001
  • A simply supported pipe conveying fluid and a moving mass upon it constitute a vibrational system. The equation of motion is derived by using Lagrange's equation. The influence of the velocity and the inertia force of a moving mass and the velocities of fluid flow in the pipe have been studied on the dynamic behavior of a simply supported pipe by numerical method. The velocities of fluid low are considered within its critical values of the simply supported pipe without a moving mass upon it. Their coupling effects on the transverse vibration of a simply supported pipe are inspected too. as the velocity of a moving mass increases, the deflection of midspan of a simply supported pipe conveying fluid is increased and the frequency of transverse vibration of the pipe is not varied. Increasing of the velocity of fluid flow makes the frequency of transverse vibration of the simply supported pipe conveying fluid decrease and the deflection of midspan of the pipe increase. The deflection of the simply supported pipe conveying fluid is increased by a coupling of the moving mass and the velocities of a moving mass and fluid flow.

  • PDF

고속 병렬 로봇의 설계에 관한 연구 (A Study on the Design of High-speed Parallel Robot)

  • 김병인;경진호;도현민;조상현
    • 한국정밀공학회지
    • /
    • 제30권10호
    • /
    • pp.1069-1077
    • /
    • 2013
  • These days, the interest of high speed robotic system is increasing because it is very important to get the cost-competitiveness. The parallel kinematic mechanism is more useful than the serial kinematic mechanism. For the reason, the researches on the parallel robot system as a high speed robotic one are have been done by many researchers. In this paper, the research on the design and analysis of the high speed parallel robot has been done by the authors. First, Basic robot structure is designed and modal analysis is studied to get the basic characteristics of the vibrational motion. Second, the harmonic analysis is studied to get the information of the natural frequency in some different designs of the outer-arm of the parallel robot. Finally, actual robot system is designed and implemented and it is confirmed that the analysis results coincide with the experimental results.

유체유동 외팔 파이프의 고유진동수에 미치는 이동질량들의 영향 (The Influence of Moving Masses on Natural Frequency of Cantilever Pipe Conveying Fluid)

  • 윤한익;손인수;진종태;김현수
    • 한국소음진동공학회논문집
    • /
    • 제12권11호
    • /
    • pp.840-846
    • /
    • 2002
  • The vibrational system of this study is consisted of a cantilever pipe conveying fluid, the moving masses upon it and an attached tip mass. The equation of motion is derived by using Lagrange equation. The influences of the velocity and the number of moving masses and the velocities of fluid flow in the pipe have been studied on the natural frequency of a cantilever pipe by numerical method. As the size and number of a moving mass increases, the natural frequency of cantilever pipe conveying fluid is decreased. When the first a moving mass Is located at the end of cantilever pipe, the increasing of the distance of moving masses make the natural frequency increase at first and third mode, but the frequency of second mode is decreased. The variation of natural frequency of the system is decreased due to increase of the number of a moving mass. The number and distance of moving masses effect more on the frequency of higher mode of vibration.

The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제24권6호
    • /
    • pp.711-726
    • /
    • 2017
  • In the present work, by considering the agglomeration effect of single-walled carbon nanotubes, free vibration characteristics of functionally graded (FG) nanocomposite sandwich plates resting on Pasternak foundation are presented. The volume fractions of randomly oriented agglomerated single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. To determine the effect of CNT agglomeration on the elastic properties of CNT-reinforced composites, a two-parameter micromechanical model of agglomeration is employed. In this research work, an equivalent continuum model based on the Eshelby-Mori-Tanaka approach is employed to estimate the effective constitutive law of the elastic isotropic medium (matrix) with oriented straight CNTs. The 2-D generalized differential quadrature method (GDQM) as an efficient and accurate numerical tool is used to discretize the equations of motion and to implement the various boundary conditions. The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The benefit of using the considered power-law distribution is to illustrate and present useful results arising from symmetric and asymmetric profiles. The effects of two-parameter elastic foundation modulus, geometrical and material parameters together with the boundary conditions on the frequency parameters of the laminated FG nanocomposite plates are investigated. It is shown that the natural frequencies of structure are seriously affected by the influence of CNTs agglomeration. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of laminated plates.

Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity

  • Hussain, Muzamal;Naeem, Muhammad Nawaz;Tounsi, Abdelouahed;Taj, Muhammad
    • Advances in nano research
    • /
    • 제7권6호
    • /
    • pp.431-442
    • /
    • 2019
  • Vibration analysis of carbon nanotubes (CNTs) is very essential field owing to their many promising applications in tiny instruments. In current study, the Eringen's nonlocal elasticity theory with clamped-clamped and clamped-free end conditions is utilized for the vibration analysis of armchair and zigzag SWCNTs. The Fourier method is utilized to solve the ordinary differential equation. The motion equation for this system is developed using a novel wave propagation method. Complex exponential functions have been used and the axial model depends on BCs that has been described at the edges of CNTs. The behavior of different nonlocal parameters is considered to find the vibrational frequency of SWCNTs. It is exhibited that the effect of frequencies against aspect ratio by varying the bending rigidity. It has been investigated that by increasing the nonlocal parameter decreases the frequencies and on increasing the aspect ratio increases the frequencies for both the tubes. To generate the fundamental natural frequencies of SWCNTs, computer software MATLAB engaged. The numerical results are validated with existing open text. Since the percentage of error is negligible, the model has been concluded as valid.