• 제목/요약/키워드: unit sphere

검색결과 120건 처리시간 0.019초

NOTES ON TANGENT SPHERE BUNDLES OF CONSTANT RADII

  • Park, Jeong-Hyeong;Sekigawa, Kouei
    • 대한수학회지
    • /
    • 제46권6호
    • /
    • pp.1255-1265
    • /
    • 2009
  • We show that the Riemannian geometry of a tangent sphere bundle of a Riemannian manifold (M, g) of constant radius $\gamma$ reduces essentially to the one of unit tangent sphere bundle of a Riemannian manifold equipped with the respective induced Sasaki metrics. Further, we provide some applications of this theorem on the $\eta$-Einstein tangent sphere bundles and certain related topics to the tangent sphere bundles.

SCALAR CURVATURE OF CONTACT THREE CR-SUBMANIFOLDS IN A UNIT (4m + 3)-SPHERE

  • Kim, Hyang-Sook;Pak, Jin-Suk
    • 대한수학회보
    • /
    • 제48권3호
    • /
    • pp.585-600
    • /
    • 2011
  • In this paper we derive an integral formula on an (n + 3)-dimensional, compact, minimal contact three CR-submanifold M of (p-1) contact three CR-dimension immersed in a unit (4m+3)-sphere $S^{4m+3}$. Using this integral formula, we give a sufficient condition concerning the scalar curvature of M in order that such a submanifold M is to be a generalized Clifford torus.

THE UNIT TANGENT SPHERE BUNDLE WHOSE CHARACTERISTIC JACOBI OPERATOR IS PSEUDO-PARALLEL

  • Cho, Jong Taek;Chun, Sun Hyang
    • 대한수학회보
    • /
    • 제53권6호
    • /
    • pp.1715-1723
    • /
    • 2016
  • We study the characteristic Jacobi operator ${\ell}={\bar{R}({\cdot},{\xi}){\xi}$ (along the Reeb flow ${\xi}$) on the unit tangent sphere bundle $T_1M$ over a Riemannian manifold ($M^n$, g). We prove that if ${\ell}$ is pseudo-parallel, i.e., ${\bar{R}{\cdot}{\ell}=L{\mathcal{Q}}({\bar{g}},{\ell})$, by a non-positive function L, then M is locally flat. Moreover, when L is a constant and $n{\neq}16$, M is of constant curvature 0 or 1.

SECTIONAL CURVATURE OF CONTACT C R-SUBMANIFOLDS OF AN ODD-DIMENSIONAL UNIT SPHERE

  • Kim, Hyang-Sook;Pak, Jin-Suk
    • 대한수학회보
    • /
    • 제42권4호
    • /
    • pp.777-787
    • /
    • 2005
  • In this paper we study (n + 1)-dimensional compact contact CR-submanifolds of (n - 1) contact CR-dimension immersed in an odd-dimensional unit sphere $S^{2m+1}$. Especially we provide necessary conditions in order for such a sub manifold to be the generalized Clifford surface $$S^{2n_1+1}(((2n_1+1)/(n+1))^{\frac{1}{2}})\;{\times}\;S^{2n_2+1}(((2n_2+1)/(n+1)^{\frac{1}{2}})$$ for some portion (n1, n2) of (n - 1)/2 in terms with sectional curvature.

REEB FLOW INVARIANT UNIT TANGENT SPHERE BUNDLES

  • Cho, Jong Taek;Chun, Sun Hyang
    • 호남수학학술지
    • /
    • 제36권4호
    • /
    • pp.805-812
    • /
    • 2014
  • For unit tangent sphere bundles $T_1M$ with the standard contact metric structure (${\eta},\bar{g},{\phi},{\xi}$), we have two fundamental operators that is, $h=\frac{1}{2}{\pounds}_{\xi}{\phi}$ and ${\ell}=\bar{R}({\cdot},{\xi}){\xi}$, where ${\pounds}_{\xi}$ denotes Lie differentiation for the Reeb vector field ${\xi}$ and $\bar{R}$ denotes the Riemmannian curvature tensor of $T_1M$. In this paper, we study the Reeb ow invariancy of the corresponding (0, 2)-tensor fields H and L of h and ${\ell}$, respectively.