DOI QR코드

DOI QR Code

A NOTE ON THE EXTENSION OF ε-ISOMETRIES ON THE UNIT SPHERE OF BANACH SPACES

  • Minanur Rohman (Department of Mathematics, Faculty of Science, Ondokuz Mayis Universitesi, Department of Madrasah Ibtidaiyah Teacher Education, School of Islamic Studies Ma'had Aly Al-Hikam Malang) ;
  • Ilker Eryilmaz (Department of Mathematics, Faculty of Science, Ondokuz Mayis Universitesi)
  • Received : 2023.05.04
  • Accepted : 2023.09.13
  • Published : 2024.03.20

Abstract

Let X, Y be Banach spaces, SX and SY be the unit sphere of X and Y, respectively. Let f0 : SX → SY be ε-isometry for some ε ≥ 0. In this paper, we show that there is an extension f : X → Y of f0 such that f is linear.

Keywords

Acknowledgement

The authors thank OMU Functional Analysis and Function Theory Research Group (OFAFTReG) for meaningful discussions in this study. Special thank to Prof. Cenap Duyar, Prof. Birsen Duyar, and Dr. Halil Mutuk for their suggestions. The authors also thank the reviewers for their comments and suggestions in this article.

References

  1. E. Bishop and R. R. Phleps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961), no. 1, 97-98. https://doi.org/10.1090/S0002-9904-1961-10514-4
  2. D. G. Bourgin, Aproximate isometries, Bull. Amer. Math. Soc. 52 (1946), no. 8, 704-714. https://doi.org/10.1090/S0002-9904-1946-08638-3
  3. L. Cheng, Q. Cheng, K. Tu, and J. Zhang, A universal theorem for stability of ε-isometries of Banach spaces, J. Func. Anal. 269 (2015), no. 1, 199-214. https://doi.org/10.1016/j.jfa.2015.04.015
  4. L. Cheng and Y. Dong, A note on the stability of nonsurjective ε-isometries of Banach spaces, Proc. Amer. Math. Soc. 148 (2020), no. 11, 4837-4844. https://doi.org/10.1090/proc/15110
  5. L. Cheng, Y. Dong, and W. Zhang, Stability of nonlinear non-surjective ε-isometries of Banach spaces, J. Func. Anal. 264 (2013), no. 3, 713-734. https://doi.org/10.1016/j.jfa.2012.11.008
  6. D. Dai and Y. Dong, Stability of Banach spaces via nonlinear ε-isometries, J. Math. Anal. Appl. 414 (2014), no. 2, 996-1005. https://doi.org/10.1016/j.jmaa.2014.01.028
  7. C. R. Diminnie, E. Z. Andalafte, and R. W. Freese, Angles in normed linear spaces and a characterization of real inner product spaces, Math. Nachr. 129 (1986), no. 1, 197-204. https://doi.org/10.1002/mana.19861290118
  8. R. W. Freese, C. R. Diminnie, and E. Z. Andalafate, Angle bisectors in normed linear spaces, Math. Nachr. 131 (1987), no. 1, 167-173. https://doi.org/10.1002/mana.19871310115
  9. G. G. Ding and J. Z. Li, Isometries between unit spheres of the 𝑙-sum of strictly convex normed spaces, Bull. Aust. Math. Soc. 88 (2013), no. 3, 369-375. https://doi.org/10.1017/S000497271300018X
  10. M. Fabian, P. Habala, P. Hajek, V. Montesinos, and V. Zizler, Banach Space Theory: The Basis for Linear and Nonlinear Analysis, Springer, New York, 2010.
  11. T. Figiel, On nonlinear isometric embedding of normed linear space, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 16 (1986), no. 1, 185-188.
  12. J. Gevirtz, Stability of isometries on Banach spaces, Proc. Amer. Math. Soc. 89 (1983), no. 4, 633-636. https://doi.org/10.1090/S0002-9939-1983-0718987-6
  13. P. M. Gruber, Stability of isometries, Trans. Amer. Math. Soc. 45 (1978), no. 1, 263-277. https://doi.org/10.1090/S0002-9947-1978-0511409-2
  14. D. H. Hyers and S. M. Ulam, On approximate isometries, Bull. Amer. Math. Soc. 51 (1945), no. 4, 288-292. https://doi.org/10.1090/S0002-9904-1945-08337-2
  15. S. Mazur and S. Ulam, Sur les transformations isometriques d'espaces vectoriels normes, C R Acad. Sci. Paris. 194 (1932), no. 1, 946-948.
  16. R. E. Megginson, An Introduction to Banach Space Theory, Springer, New York, 1991.
  17. M. Omladic and P. Semrl, On Nonlinear Perturbation of Isometries, Math. Ann. 303 (1995), no. 1, 617-628. https://doi.org/10.1007/BF01461008
  18. R. R. Phleps, Convex Functions, Monotone Operators, and Differentiability, Lecture Note in Mathematics, vol. 1364, Springer-Verlag, Berlin, 1993.
  19. S. Qian, ε-isometries embeddings, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1797-1803.
  20. M. Rohman and I. Eryilmaz, Weak stability of ε-isometry mapping on real Banach spaces, Eur. J. Sci. Tech. 34 (2022), no. 1, 110-114.
  21. M. Rohman and I. Eryilmaz, Some notes on the greedy basis for Banach spaces under ε-isometry, Int. J. Nonlinear Anal. 14 (2022), no. 1, 1881-1889.
  22. M. Rohman, R. B. E. Wibowo, and Marjono, Stability of an almost surjective epsilonisometry mapping in the dual of real Banach spaces, Aust. Jour. Math. Anal. App. 13 (2016), no. 1, 1-9.
  23. S. N. Sales, Some characterizations of inner product spaces based on angle, Hacettepe J. Math. Statistics 48 (2019), no. 3, 626-632. https://doi.org/10.15672/hujms.574044
  24. L. Sun, On the symmetrization of ε-isometries on positive cones of continuous function spaces, Func. Anal. Appl. 55 (2021), no. 1, 93-97.
  25. D. Tingley, Isometries of the unit sphere, Geom. Dedicata 22 (1987), no. 3, 371-378. https://doi.org/10.1007/BF00147942
  26. I. A. Vestfrid, Near-isometries of the unit sphere, Ukr. Math. J. 72 (2020), no. 4, 575-580. https://doi.org/10.1007/s11253-020-01807-9
  27. Y. Zhou, Z. Zhang, and C. Liu, On linear isometries and ε-isometries between Banach spaces, J. Math. Anal. Appl. 435 (2016), no. 1, 754-764. https://doi.org/10.1016/j.jmaa.2015.10.035