DOI QR코드

DOI QR Code

NOTES ON TANGENT SPHERE BUNDLES OF CONSTANT RADII

  • Published : 2009.11.01

Abstract

We show that the Riemannian geometry of a tangent sphere bundle of a Riemannian manifold (M, g) of constant radius $\gamma$ reduces essentially to the one of unit tangent sphere bundle of a Riemannian manifold equipped with the respective induced Sasaki metrics. Further, we provide some applications of this theorem on the $\eta$-Einstein tangent sphere bundles and certain related topics to the tangent sphere bundles.

Keywords

References

  1. M. T. K. Abbassi and O. Kowalski, On g-natural metrics with constant scalar curvature on unit tangent sphere bundles, Topics in almost Hermitian geometry and related fields, 1-29, World Sci. Publ., Hackensack, NJ, 2005. https://doi.org/10.1142/9789812701701_0001
  2. E. Boeckx, When are the tangent sphere bundles of a Riemannian manifold reducible?, Trans. Amer. Math. Soc. 355 (2003), no. 7, 2885-2903. https://doi.org/10.1090/S0002-9947-03-03289-6
  3. E. Boeckx and L. Vanhecke, Unit tangent sphere bundles with constant scalar curvature, Czechoslovak Math. J. 51(126) (2001), no. 3, 523-544. https://doi.org/10.1023/A:1013779805244
  4. Y. D. Chai, S. H. Chun, J. H. Park, and K. Sekigawa, Remarks on -Einstein unit tangent bundles, Monatsh. Math. 155 (2008), no. 1, 31-42. https://doi.org/10.1007/s00605-008-0534-4
  5. J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1972), 413-443.
  6. J. T. Cho and J.-I. Inoguchi, Pseudo-symmetric contact 3-manifolds. II. When is the tangent sphere bundle over a surface pseudo-symmetric?, Note Mat. 27 (2007), no. 1, 119-129.
  7. S. H. Chun, J. H. Park, and K. Sekigawa, Remarks on -Einstein tangent sphere bundles of radius r, preprint.
  8. O. Kowalski and M. Sekizawa, On tangent sphere bundles with small or large constant radius, Special issue in memory of Alfred Gray (1939-1998). Ann. Global Anal. Geom. 18 (2000), no. 3-4, 207-219. https://doi.org/10.1023/A:1006707521207
  9. O. Kowalski and M. Sekizawa, On the scalar curvature of tangent sphere bundles with arbitrary constant radius, Bull. Greek Math. Soc. 44 (2000), 17-30.
  10. E. Musso and F. Tricerri, Riemannian metrics on tangent bundles, Ann. Mat. Pura Appl. (4) 150 (1988), 1-19. https://doi.org/10.1007/BF01761461
  11. M. Sekizawa, Curvatures of tangent bundles with Cheeger-Gromoll metric, Tokyo J. Math. 14 (1991), no. 2, 407-417. https://doi.org/10.3836/tjm/1270130381

Cited by

  1. A REMARK ON H-CONTACT UNIT TANGENT SPHERE BUNDLES vol.48, pp.2, 2011, https://doi.org/10.4134/JKMS.2011.48.2.329
  2. Tangent sphere bundles with constant trace of the Jacobi operator vol.53, pp.2, 2012, https://doi.org/10.1007/s13366-011-0057-3
  3. Spectral geometry of eta-Einstein Sasakian manifolds vol.62, pp.11, 2012, https://doi.org/10.1016/j.geomphys.2012.06.007
  4. When are the tangent sphere bundles of a Riemannian manifold η-Einstein? vol.36, pp.3, 2009, https://doi.org/10.1007/s10455-009-9160-1