• Title/Summary/Keyword: ultra thin film

Search Result 355, Processing Time 0.026 seconds

Computer Simulation of Mo/Si Thin Film Characteristics for EUVL Technology (EUVL 응용을 위한 Mo/Si 박막 특성 전산모사)

  • Lee, Young-Tae;Chung, Yong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.807-811
    • /
    • 2002
  • In this work, we investigated the deposition behavior of Mo/Si multilayer thin film structures simulated by a PVD process simulator based on Monte Carlo method to assist the optimized fabrication of the high quality mask in EUVL(Extreme Ultra-Violet Lithography) process. The shape of simulated thin film structures turned out to be largely dependent on the gas pressure(1∼30 mTorr), the target-substrate distance(1∼30 cm) and the diffusion length(1∼10 nm). From the simulation studies, it was predicted that relatively uniform thin film structures can be fabricated by decreasing gas pressure and increasing the target-substrate distance.

Fabrication of Transparent Ultra-thin Single-walled Carbon Nanotube Films for Field Emission Applications

  • Jang, Eun-Soo;Goak, Jung-Choon;Lee, Han-Sung;Kim, Myoung-Su;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.353-353
    • /
    • 2008
  • Carbon nanotubes (CNTs) are attractive for field emitter because of their outstanding electrical, mechanical, and chemical properties. Several applications using CNTs as field emitters have been demonstrated such as field emission display (FED), backlight unit (BLU), and X-ray source. In this study, we fabricated a CNT cathode using transparent ultra-thin CNT film. First, CNT aqueous solution was prepared by ultrasonically dispersing purified single-walled carbon nanotubes (SWCNTs) in deionized water with sodium dodecyl sulfate (SDS). To obtain the CNT film, the CNT solution in a milliliter or even several tens of micro-litters was deposited onto a porous alumina membrane through vacuum filtration process. Thereafter, the alumina membrane was solvated by the 3 M NaOH solution and the floating CNT film was easily transferred to an indium-tin-oxide (ITO) glass substrate of $0.5\times0.5cm^2$ with a film mask. The transmittance of as-prepared ultra-thin CNT films measured by UV-Vis spectrophotometer was 68~97%, depending on the amount of CNTs dispersed in an aqueous solution. Roller activation, which is a essential process to improve the field emission characteristics of CNT films, increased the UV-Vis transmittance up to 93~98%. This study presents SEM morphology of CNT emitters and their field emission properties according to the concentration of CNTs in an aqueous solutions. Since the ultra-thin CNT emitters prepared from the solutions show a high peak current density of field emission comparable to that of the paste-base CNT emitters and do not contain outgassing sources such as organic binders, they are considered to be very promising for small-size-but-high-end applications including X-ray sources and microwave power amplifiers.

  • PDF

Nondestructive Evaluation of Nanostructured Thin Film System Using Scanning Acoustic Microscopy (초음파현미경을 이용한 나노 구조 박막 시스템의 비파괴평가)

  • Miyasaka, Chiaki;Park, Ik-Keun;Park, Tae-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.437-443
    • /
    • 2010
  • In recent years, as nano scale structured thin film technology has emerged in various fields such as the materials, biomedical and acoustic sciences, the quantitative nondestructive adhesion evaluation of thin film interfaces using ultra high frequency scanning acoustic microscopy(SAM) has become an important issue in terms of the longevity and durability of thin film devices. In this study, an effective technique for investigating the interfaces of nano scale structured thin film systems is described, based on the focusing of ultrasonic waves, the generation of leaky surface acoustic waves(LSAWs), V(z) curve simulation and ultra high frequency acoustical imaging_ Computer simulations of the V(z) curve were performed to estimate the sensitivity of detection of micro flaws(i.e., delamination) in a thin film system. Finally, experiments were conducted to confirm that a SAM system operating at a frequency of 1 GHz can be useful to visualize the micro flaws in nano structured thin film systems.

Fabrication of Ultra Thin Films with (N-docosyl pyridinium)-TCNQ(1:2) Complex by the Langmuir-Blodgett(LB) Method (Langmuir-Blodgett(LB)법을 이용한 (N-docosyl pyridinium)-TCNQ(1:2) 착체의 초박막 제작)

  • Kang, Hun;Kim, Yong-Tae;Jeong, Soon-Wook;Sohn, Byoung-Chung;Kang, Dou-Yol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.54-57
    • /
    • 1988
  • A film is fabricated by depositing several slices ultra thin films on a slide glass. The UV-absorbance outcomed on a multi-layered bulky ultra thin film with (N-docosyl pyridinium)-TCNQ (1:2) complex results tat the quantity of UV-absorbances becomes more linearly according to the number of layer becomes higher. In addition, it is found that the capacitance of this film gets smaller as the number of layer gets higher. Finally, the conductivity of this film is measured by the direction of the long axis of the TCNQ radical anion, and is resulted in a remarkably low value (about 1.66∼3.78 x 10$\^$-14/S/cm).

  • PDF

Effect of Ultra-thin Catalyst Deposited upon $In_2O_3$ Thin Film on CO Sensitivity ($In_2O_3$ 박막위에 증착된 초박막 촉매가 CO의 검출 감도에 미치는 영향)

  • Lee, Hye-Jung;Song, Jae-Hoon;Kwon, Soon-Nam;Kim, Tae-Song;Kim, Kwang-Ju;Jung, Hyung-Jin;Choi, Won-Kook
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.430-439
    • /
    • 2000
  • $In_2O_3$-based thin film sensor with 500-600 nm thick was fabricated for the detection of CO gas by rf magnetron sputtering. In order to improve both sensitivity to CO gas and selectivity to hydrogen gas containing -CH, ultra-thin transition metal Co catalyst was sputtered over $In_2O_3$ thin film and annealed at $500^{\circ}C$. Sensitivity to CO was maximum at the thickness of Co 2.1 nm and $300^{\circ}C$, and that to $C_3H_8$ was at the thickness of Co 1.4 nm and $350-400^{\circ}C$. From the x-ray photoelectron spectroscopy (XPS) result, ultra-thin Co was existed into CoO covered with $Co_2O_3$ on $In_2O_3$ particles, and thus p-n junction of $In_2O_3(n-type)$-CoO(p-type) was thought to be formed. In this p-n junction type sensors, sensing mechanism with reducing gases can be explained by the variation of depletion layer thickness formed in the interface.

  • PDF

Preparation and Oxygen Binding Properties of Ultra-Thin Polymer Films Containing Cobalt(II) meso-Tetraphenylporphyrin via Plasma Polymerization

  • Choe, Youngson
    • Macromolecular Research
    • /
    • v.10 no.5
    • /
    • pp.273-277
    • /
    • 2002
  • Ultra-thin polymer films containing cobalt(II) meso-tetraphenylporphyrin(CoTPP) have been prepared by vacuum codeposition of the metal complex and trans-2-butene as an organic monomer using an inductively coupled RF glow discharge operating at 7-9 Watts. The polymer films were characterized by sorption measurements. Sorption data obtained for polymer films containing CoTPP indicate that the CoTPP molecules are capable of reversibly binding oxygen molecules. It was found that the adjacent CoTPP molecules in the aggregated metal complex phase could irreversibly share the oxygen molecules. A dispersion of the metal complex molecules in the polymer matrix was made to maintain the reversible reactivity of the metal complex molecules with oxygen in the polymer films via vacuum evaporation process. The Henry mode solubility constant, the Langmuir mode capacity constant, the amount of binding oxygen, and the dissociation equilibrium in the dual mode sorption theory were discussed.

${\pi}-A$ Characteristics of Stearic Acid LB Films (Stearic Acid Langmuir-Blodgett (LB) 막의 ${\pi}-A$ 특성)

  • Lee, Dae-Il;Choi, Yong-Sung;Chang, Sang-Mok;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.241-243
    • /
    • 1991
  • The LB technique is one of the most, powerful fabricating methods of organic ultra thin film, which deposits a monolayer film in molecular level onto the surface of the substrate. In order to fabricate the LB film with optimal condition, we have to deposite monolayer film at optimum depositing pressure. which is dependent on the kind of deposit materials. ${\pi}-A$ curve is one of the most important, criteria to determine the optimum pressure. In this paper, we obtained that the optimum pressure is $20{\sim}50(mN/m)$ from ${\pi}-A$ curve of the stearic acid. In our experiments, it was known that LB ultra thin film is deposited beat at 30(mN/m) by checking the characteristics of LB film.

  • PDF

Growth and Properties of Ultra-thin SiO2 Films by Rapid Thermal Dry Oxidation Technique (급속 건식 열산화 방법에 의한 초박막 SiO2의 성장과 특성)

  • 정상현;김광호;김용성;이수홍
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.21-26
    • /
    • 2004
  • Ultra-thin silicon dioxides were grown on p-type(100) oriented silicon employing rapid thermal dry oxidation technique at the temperature range of 850∼1050 $^{\circ}C$. The growth rate of the ultra-thin film was fitted well with tile model which was proposed recently by da Silva & Stosic. The capacitance-voltage, current-voltage, characteristics were used to study the electrical properties of these thin oxides. The minimum interface state density around the midgap of the MOS capacitor having oxide thickness of 111.6 $\AA$ derived from the C-V curve was ranged from 6 to 10${\times}$10$^{10}$ /$\textrm{cm}^2$eV.