• 제목/요약/키워드: transmission of visible light

검색결과 222건 처리시간 0.048초

방사선 검출기 적용을 위한 액정 기반 다층 구조의 광 특성 평가 (The optical characteristics study of sandwich structure based liquid crystal for the radiation detector application)

  • 신정욱;강상식;박지군;조성호;차병열;김진영;이건환;남상희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.390-392
    • /
    • 2005
  • The digital radiation detectors are used clinically by diagnostic apparatus. However the digital radiation detector are some problem like high operating voltage, light blurring, low conversion efficiency, low fill factor, etc. Thus we propose a new radiation detector that the photoconductor layer and liquid crystal layer are coupled in sandwich structure. X-ray absorption in the photoconductor layer controls the state of the liquid crystal via creation of charge carrier and the light modulation of liquid crystal make image formation. The advantage of the new radiation detector is that high resolution image is acquired and the signal amplification is possible by external visible light source. In this study, we study the optical properties and electrical properties of the new radiation detector to irradiate X-ray. The Mercury Iodide($HgI_2$) was used by photoconductor material, and the aluminum is used by reflective layer. The thickness of Mercury Iodide is about $200{\mu}m$, the operating voltage of the liquid crystal is 1.5~5V. The electrical properties of Mercury Iodide was measured, and the transmission efficiency of liquid crystal was measured by modulation potential.

  • PDF

LED-ID 시스템을 이용한 SVC 신호의 전송 기법에 관한 연구 (Study on Scalable Video Coding Signals Transmission Scheme using LED-ID System)

  • 이규진;차동호;황선하;이계산
    • 한국통신학회논문지
    • /
    • 제36권10B호
    • /
    • pp.1258-1267
    • /
    • 2011
  • 본 논문에서는, 실내에서 Light Emitting Diode-Identification(LED-ID) 통신 시스템을 이용하여 비디오 신호를 전송하는 방법에 대하여 연구하였다. LED-ID 통신 기술은 기존 조명의 기능을 수행하는 LED를 사용하여 통신의 가능까지 동시에 구현할 수 있는 효과적인 방법이다. 본 기술은 LED의 RGB(Red Green Blue)광원을 통하여 신호를 전송하는 방법으로, RGB의 혼합 비율에 따라서 조명의 색이 결정되고, 또한 각 RGB신호의 BER성능이 결정된다. 그러나, 기존의 시스템처럼 비디오 신호를 RGB에 고정적으로 할당 시켜 전송하는 경우, 각 선호의 중요도가 다른 Scalable Video Coding(SVC) 신호에 비해서 비디오의 품질에 한계가 발생한다. 이러한 문제를 해결하기 위해서 이 논문에서는 White LED를 위한 RGB 혼합 비율에 따른 RGB신호의 성능을 분석하고, 분석된 성능을 바탕으로 SVC 신호를 할당 하여 전송함으로써 비디오의 품질을 향상 시킬 수 있는 방법에 대해서 연구하였다.

LED-to-LED 양방향 가시광통신 시스템 (LED-to-LED Two Way Visible Light Communication System)

  • 조승완;오훈;이연재;리데덩;안병구
    • 전자공학회논문지
    • /
    • 제53권1호
    • /
    • pp.79-85
    • /
    • 2016
  • 최근 그린 무선통신 서비스가 주목 받으면서 가시광통신에 대한 연구가 활발하게 이루어지고 있다. 현재 가시광통신은 주로 송신에 LED를 이용하고, 수신에 PD(Photo Diode)를 사용하여 통신을 한다. 그러나 이러한 시스템 방식은 응용에 한계가 있다. 본 논문에서 제안 개발된 시스템의 주요한 특징과 기여도는 다음과 같다. 첫째, LED만을 이용하여 송수신을 하는 LED-to-LED 가시광통신 시스템이며, 아날로그 스위치로 송수신회로를 교체하는 방식을 사용한다. 둘째, 단방향 통신과 양방향 통신을 함께 지원한다. 단 방향 통신은 멀티 홉을 지원한다. 성능평가 환경은 보통의 형광등이 비추는 곳에서 실험을 하였다. 단 방향 통신은 거리와 보드레이트를 변화 시키며 전송 성공여부를 측정 하였고, 양방향 통신은 거리에 따라 양방향 통신 성공여부를 확인 하였다. 본 논문에서 제안 설계한 LED-to-LED 가시광통신 시스템을 이용하여 더 많은 분야에 응용 할 수 있을 것으로 기대 된다.

Application of Nanoroll-Type Ag/g-C3N4 for Selective Conversion of Toxic Nitrobenzene to Industrially-Valuable Aminobenzene

  • Devaraji, Perumal;Jo, Wan-Kuen
    • 한국환경과학회지
    • /
    • 제29권1호
    • /
    • pp.95-108
    • /
    • 2020
  • Silver nanoparticles were loaded onto g-C3N4 (CN) with a nanoroll-type morphology (Ag/CN) synthesized using a co-polymerization method for highly selective conversion of toxic nitrobenzene to industrially-valuable aminobenzene. Scanning electron microscopy and high-resolution transmission electron microscopy (HRTEM) images of Ag/CN revealed the generation of the nanoroll-type morphology of CN. Additionally, HRTEM analysis provided direct evidence of the generation of a Schottky barrier between Ag and CN in the Ag/CN nanohybrid. Photoluminescence analysis and photocurrent measurements suggested that the introduction of Ag into CN could minimize charge recombination rates, enhancing the mobility of electrons and holes to the surface of the photocatalyst. Compared to pristine CN, Ag/CN displayed much higher ability in the photocatalytic reduction of nitrobenzene to aminobenzene, underscoring the importance of Ag deposition on CN. The enhanced photocatalytic performance and photocurrent generation were primarily ascribed to the Schottky junction formed at the Ag/CN interface, greater visible-light absorption efficiency, and improved charge separation associated with the nanoroll morphology of CN. Ag would act as an electron sink/trapping center, enhancing the charge separation, and also serve as a good co-catalyst. Overall, the synergistic effects of these features of Ag/CN improved the photocatalytic conversion of nitrobenzene to aminobenzene.

Canna edulis Leaf Extract-Mediated Preparation of Stabilized Silver Nanoparticles: Characterization, Antimicrobial Activity, and Toxicity Studies

  • Otari, S.V.;Pawar, S.H.;Patel, Sanjay K.S.;Singh, Raushan K.;Kim, Sang-Yong;Lee, Jai Hyo;Zhang, Liaoyuan;Lee, Jung-Kul
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권4호
    • /
    • pp.731-738
    • /
    • 2017
  • A novel approach to synthesize silver nanoparticles (AgNPs) using leaf extract of Canna edulis Ker-Gawl. (CELE) under ambient conditions is reported here. The as-prepared AgNPs were analyzed by UV-visible spectroscopy, transmission emission microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, energy-dispersive analysis of X-ray spectroscopy, zeta potential, and dynamic light scattering. The AgNPs showed excellent antimicrobial activity against various pathogens, including bacteria and various fungi. The biocompatibility of the AgNPs was analyzed in the L929 cell line using NRU and MTT assays. Acridine orange/ethidium bromide staining was used to determine whether the AgNPs had necrotic or apoptotic effects on L929 cells. The concentration of AgNPs required for 50% inhibition of growth of mammalian cells is far more than that required for inhibition of pathogenic microorganisms. Thus, CELE is a candidate for the eco-friendly, clean, cost-effective, and nontoxic synthesis of AgNPs.

The Dispersion Stability of Multi-Walled Carbon Nanotubes in the Presence of Poly(styrene/$\alpha-methyl$ styrene/acrylic acid) Random Terpolymer

  • Chang, Woo-Hyuck;Cheong, In-Woo;Shim, Sang-Eun;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • 제14권5호
    • /
    • pp.545-551
    • /
    • 2006
  • Aqueous dispersions of pristine and functionalized (COOH- and $NH_2$-) multi-walled, carbon nanotubes (MWNTs) were prepared by using three types of surf act ants: sodium dodecyl sulfate (SDS, anionic), PEO-PPO-PEO (Pluronic P84, non-ionic), and poly(styrene/$\alpha-methyl$ styrene/acrylic acid) random terpolymer, i.e., alkali-soluble resin (ASR). The aggregate size, $\zeta-potential$, and storage stability of the MWNT aqueous dispersions were investigated by using dynamic light scattering and the turbidity method at room temperature. The exfoliation of the MWNT aggregates was determined by a UV-visible spectrophotometer and the morphology of the surfactant-coated MWNTs was observed by transmission electron microscopy (TEM). In all cases, ASR showed better dispersion stability with the smallest aggregate size, compared with the other surfactants, because of its unique molecular structure, i.e., randomly incorporated carboxylic acid groups and planar phenyl groups that can be irreversibly and effectively adsorbed on the MWNT surface. A predominantly-exfoliated morphology of MWNTs was observed in the presence of ASR from the strong intensity of the UV-vis spectrum at 263 nm.

Markable Green Synthesis of Gold Nanoparticles Used As Efficacious Catalyst for the Reduction of 4-Nitrophenol

  • Rokade, Ashish A.;Yoo, Seong Il;Jin, Youngeup;Park, Seong Soo
    • 청정기술
    • /
    • 제26권4호
    • /
    • pp.251-256
    • /
    • 2020
  • The biocompatibility and plasmonic properties of Au nanoparticles make them useful for photothermal therapy, drug delivery, imaging, and many other fields. This study demonstrated a novel, facile, economic, and green synthetic method to produce gold nanoparticles. Gold nanoparticles (AuNPs) with spherical and triangular shapes were effectively synthesized using only Schisandra chenesis fruit extract as the capping and reducing agent. The shape of the AuNPs could be engineered simply by adjusting the molar concentration of HAuCl4 in the reaction mixture. The as-synthesized AuNPs were characterized using UV-VIS spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and energy dispersive X-ray analysis (EDXA). This study revealed that by using the HAuCl4 concentration in the AuNP synthesis, the shape and size of the AuNPs could be controlled by the concentration of HAuCl4 and Schisandra chinensis fruit extract as a surfactant. The as-synthesized AuNPs samples had sufficient colloidal stability without noticeable aggregation and showed the predominant growth of the (111) plane of face-centered cubic gold during the crystal growth. The catalytic efficiency of the AuNPs synthesized using Schisandra chenesis fruit extract was examined by monitoring the catalytic reduction of 4-nitrophenol to 4-aminophenol using Ultraviolet-visible spectroscopy (UV-Vis spectroscopy). The synthesized AuNPs showed good catalytic activity to reduce 4-nitrophenol to 4-aminophenol, revealing their practical usefulness.

Simple Preparation of Anatase Titanium Dioxide Nanoparticles by Heating Titanium-Organic Frameworks

  • Im, Ji Hyuk;Kang, Eunyoung;Yang, Seung Jae;Park, Hye Jeong;Kim, Jaheon;Park, Chong Rae
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2477-2480
    • /
    • 2014
  • Thermal degradation of titanium-containing metal-organic frameworks (MOFs; MIL-125 and MIL-125-$NH_2$ at $350^{\circ}C$ for 6 h in air produced $TiO_2$ nanoparticles of ca. 10 nm in diameter. Scanning electron and transmission electron microscope analyses indicated that those nanoparticles were aggregated randomly within each crystalline particle of their MOF precursors. The $TiO_2$ nanoparticles prepared from MIL-125-$NH_2$ exhibited higher activity for the degradation of 4-chlorophenol under visible light.

Tellurium계 상변화 칼코겐화물 박막의 광투과 특성 (Optical Transmission Characteristics of Tellurium-based Phase-change Chalcogenide Thin Films)

  • 윤회진;방기수;이승윤
    • 한국전기전자재료학회논문지
    • /
    • 제29권7호
    • /
    • pp.408-413
    • /
    • 2016
  • The dielectric thin films applied to multi-colored semitransparent thin film solar cells have been extensively studied. In this work, we prepared GeSbTe and GeTe chalcogenide thin films using magnetron sputtering, and investigated their optical and phase-change properties to replace the dielectric films. The changes of surface morphology, sheet resistance, and X-ray diffraction of the Te-based chalcogenide films support the fact that the amorphous stability of GeTe films is superior to that of GeSbTe films. While both amorphous GeSbTe and GeTe films thinner than 30 nm have optical transparency between 5% and 60%, GeTe films transmit more visible light than GeSbTe films. It is confirmed by computer simulation that the color of semitransparent silicon thin film solar cells can be adjusted with the addition of GeSbTe or GeTe films. Since it is possible to adjust the contrast of the solar cells by exploiting the phase-change property, the two kinds of chalcogenide films are anticipated to be used as an optical layer in semitransparent solar cells.

In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing

  • Ryu, Donghyeon;Loh, Kenneth J.;Ireland, Robert;Karimzada, Mohammad;Yaghmaie, Frank;Gusman, Andrea M.
    • Smart Structures and Systems
    • /
    • 제8권5호
    • /
    • pp.471-486
    • /
    • 2011
  • Various types of strain sensors have been developed and widely used in the field for monitoring the mechanical deformation of structures. However, conventional strain sensors are not suited for measuring large strains associated with impact damage and local crack propagation. In addition, strain sensors are resistive-type transducers, which mean that the sensors require an external electrical or power source. In this study, a gold nanoparticle (GNP)-based polymer composite is proposed for large strain sensing. Fabrication of the composites relies on a novel and simple in situ GNP reduction technique that is performed directly within the elastomeric poly(dimethyl siloxane) (PDMS) matrix. First, the reducing and stabilizing capacities of PDMS constituents and mixtures are evaluated via visual observation, ultraviolet-visible (UV-Vis) spectroscopy, and transmission electron microscopy. The large strain sensing capacity of the GNP-PDMS thin film is then validated by correlating changes in thin film optical properties (e.g., maximum UV-Vis light absorption) with applied tensile strains. Also, the composite's strain sensing performance (e.g., sensitivity and sensing range) is also characterized with respect to gold chloride concentrations within the PDMS mixture.