References
- An, J., Yang, Q., Luo, Q., Li, X., Yin, R., Liu, F., Wang, D., 2016, Preparation and characterization of silver/g-carbon nitride/chitosan nanocomposite with hotocatalytic activity, Integr. Ferroelectr., 180, 52-60.
- Bai, X., Wang, L., Zong, R., Zhu, Y., 2013, Photocatalytic activity enhanced via gC3N4 nanoplates to nanorods, J. Phys. Chem. C, 117, 9952-9961. https://doi.org/10.1021/jp402062d
-
Bharad, P. A., Sivaranjani, K., Gopinath, C. S., 2015, A Rational approach towards enhancing solar water splitting: a case study of Au-RGO/N-RGO-
$TiO_2$ , Nanoscale, 7, 11206-11215. https://doi.org/10.1039/C5NR02613J -
Bu, Y., Chen, Z., Li, W., 2014, Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous
$g-C_3N_4$ heterojunction material, Appl. Catal. B, 144, 622-630. https://doi.org/10.1016/j.apcatb.2013.07.066 - Chaiseeda, K., Nishimura, S., Ebitani, K., 2017, Gold nanoparticles supported on alumina as a catalyst for surface plasmon-enhanced selective reductions of nitrobenzene, ACS Omega, 2, 7066-7070. https://doi.org/10.1021/acsomega.7b01248
- Chen, Z., Liu, S., Yang, M. Q., Xu, Y. J., 2013, Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water, ACS Appl. Mater. Inter., 5, 4309-4319. https://doi.org/10.1021/am4010286
-
Dai, X., Xie, M., Meng, S., Fu, X., Chen, X., 2014, Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aminobenzene using
$CdS/g-C_3N_4$ photocatalyst under visible light irradiation, Appl. Catal. B, 158-159, 382-390. https://doi.org/10.1016/j.apcatb.2014.04.035 -
Devaraji, P., Gopinath, C. S., 2018, Pt -
$CdS/g-C_3N_4$ - (Au/$TiO_2$ ): Electronically integrated nanocomposite for solar hydrogen generation, Int. J. Hydrogen Energ., 43, 601-613. https://doi.org/10.1016/j.ijhydene.2017.11.057 -
Devaraji, P., Jo, W. K., 2018, Two‐dimensional mixed phase leaf‐
$Ti_{1-x}Cu_xO_2$ sheets synthesized based on a natural leaf template for increased photocatalytic H2 evolution, Appl. Catal. A, 565, 1-12. https://doi.org/10.1016/j.apcata.2018.07.035 - Devaraji, P., Mapa, M., Hakkeem, H. A., Sudhakar, V., Krishnamoorthy, K., Gopinath, C. S., 2017, ZnO-ZnS heterojunction: A potential candidate for optoelectronics applications and mineralization of endocrine disruptors in direct sunlight, ACS Omega, 2, 6768-6781. https://doi.org/10.1021/acsomega.7b01172
-
Devaraji, P., Sathu, N. K., Gopinath, C. S., 2014, Ambient oxidation of benzene to phenol by photocatalysis on Au/
$Ti_{0.98}V_{0.02}O_2$ : role of holes, ACS Catal., 4, 2844-2853. https://doi.org/10.1021/cs500724z - European Chemicals Agency, Committee for Risk Assessment, Nitrobenzene ECHA/RAC/CLH-0-0000 002350-87-01/A1, February 3, 2012.
-
Ge, L., Han, C., Liu, J., Li, Y., 2011, Enhanced visible light photocatalytic activity of novel polymeric
$CdS/g-C_3N_4$ loaded with Ag nanoparticles, Appl. Catal. A, 409-410, 215-222. https://doi.org/10.1016/j.apcata.2011.10.006 - Gholap, S. G., Badiger, M. V., Gopinath, C. S., 2005, Molecular origins of wettability of hydrophobic poly (vinylidene fluoride) microporous membranes on poly (vinyl alcohol) adsorption: surface and interface analysis by XPS, J Phys. Chem. C, 109, 13941-13947. https://doi.org/10.1021/jp050806r
- Grirrane, A., Corma, A., Garcia, H., 2008, Gold catalyzed synthesis of aromatic azo compounds from aminobenzenes and nitroaromatics, Science, 322, 1661-1664. https://doi.org/10.1126/science.1166401
- Guo, S., Deng, Z., Li, M., Jiang, B., Tian, C., Pan, Q., Fu, H., 2016, Phosphorous-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution, Angew. Chem. Int. Edit., 55, 1830-1834. https://doi.org/10.1002/anie.201508505
-
Guo, X., Zhang, G., Cui, H., Wei, N., Song, X., Li, J., Tian, J., 2017, Porous
$TiB_2$ -TiC/$TiO_2$ heterostructures: synthesis and enhanced photocatalytic properties from nanosheets to sweetened rolls, Appl. Catal. B, 217, 12-20. https://doi.org/10.1016/j.apcatb.2017.05.079 -
Han, Q., Wang, B., Gao, J., Cheng, Z., Zhao, Y., Zhang, Z., Qu, L., 2016, Atomically thin mesoporous nanomesh of graphitic
$C_3N_4$ for high-efficiency photocatalytic hydrogen evolution, ACS Nano, 10, 2745-2751. https://doi.org/10.1021/acsnano.5b07831 -
Ho, W., Zhang, Z., Lin, W., Huang, S., Zhang, X., Wang, X., Huang, Y., 2015, Copolymerization with 2,4,6-triaminopyrimidine for the roll-up the layer structure, tunable electronic properties, and photocatalysis of
$CdS/gC_3N_4$ , ACS Appl. Mater. Inter., 7, 5497-5505. https://doi.org/10.1021/am509213x -
Jin, Z., Zhang, Q., Yuana, S., Ohno, T., 2015, Synthesis high specific surface area nanotube
$g-C_3N_4$ with two-step condensation treatment of melamine to enhance photocatalysis properties, RSC Adv., 5, 4026-4029. https://doi.org/10.1039/C4RA13355B - Ke, X., Zhang, X., Zhao, J., Sarina, S., Barry, J., Zhu, H., 2013, Selective reductions using visible light photocatalysts of supported gold nanoparticles, Green Chem., 15, 236-244. https://doi.org/10.1039/C2GC36542A
-
Khan, M. E., Han, T. H., Khan, M. M., Karim, M. R., Cho, M. H., 2018, Environmentally sustainable fabrication of
$Ag@g-C_3N_4$ nanostructures and their multi -functional efficacy as antibacterial agents and photocatalysts, ACS Appl. Nano Mater., 1, 2912-2922. https://doi.org/10.1021/acsanm.8b00548 -
Kimura, K., Naya, S. I., Jin-nouchi, Y., Tada, H., 2012,
$TiO_2$ crystal form-dependence of the Au/$TiO_2$ plasmon photocatalyst's activity, J. Phys. Chem. C, 116, 7111-7117. https://doi.org/10.1021/jp301681n -
Kumar, S., Surendar, T., Baruah, A., Shanker, V., 2013, Synthesis of a novel and stable
$g-C_3N_4-Ag_3PO_4$ hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation, J. Mater. Chem. A, 1, 5333-5340. https://doi.org/10.1039/c3ta00186e -
Li, H., Gao, Y., Wu, X., Lee, P. H., Shih, K., 2017, Fabrication of heterostructured
$g-C_3N_4/Ag-TiO_2$ hybrid photocatalyst with enhanced performance in photocatalytic conversion of$CO_2$ under simulated sunlight irradiation, Appl, Surf. Sci., 402, 198-207. https://doi.org/10.1016/j.apsusc.2017.01.041 - Patra, K. K., Bhuskute, B. D., Gopinath, C. S., 2017, Possibly scalable solar hydrogen generation with quasi-artificial leaf approach, Sci. Rep., 7, 1-9. https://doi.org/10.1038/s41598-016-0028-x
-
Patra, K. K., Gopinath, C. S., 2017, Harnessing visible-light and limited near-IR photons through plasmon effect of gold nanorod with
$AgTiO_2$ , J. Phys. Chem. C, 122, 1206-1214. https://doi.org/10.1021/acs.jpcc.7b10289 - Roy, P., Periasamy, A. P., Liang, C. T., Chang, H. T., 2013, Synthesis of graphene-ZnO-Au nanocomposites for efficient photocatalytic reduction of nitrobenzene, Environ. Sci. Technol., 47, 6688-6695. https://doi.org/10.1021/es400422k
- Sathu, N. K., Devaraji, P., Gopinath, C. S., 2016, Green leaf to inorganic leaf: a case study of ZnO, J. Nanosci. Nanotechnol., 16, 9203-9208. https://doi.org/10.1166/jnn.2016.12912
-
Shiraishi, Y., Kanazawa, S., Sugano, Y., Tsukamoto, D., Sakamoto, H., Ichikawa, S., Hirai, T., 2014, Highly selective production of hydrogen peroxide on graphitic carbon nitride (
$gC_3N_4$ ) photocatalyst activated by visible light, ACS Catal., 4, 774-780. https://doi.org/10.1021/cs401208c -
Tada, H., Ishida, T., Takao, A., Ito, S., Mukhopadhyay, S., Akita, T., Tanaka, K., Kobayashi, H., 2005, Kinetic and DFT studies on the
$Ag/TiO_2$ ‐photocatalyzed selective reduction of nitrobenzene to aminobenzene, Chemphyschem, 6, 1537-1543. https://doi.org/10.1002/cphc.200500031 -
Tahir, M., Cao, C., Mahmood, N., Butt, F. K., Mahmood, A., Idrees, F., Hussain, S., Tanveer, M., Ali, Z., Aslam, I. 2014, Multifunctional
$gC_3N_4$ nanofibers: a template -free fabrication and enhanced optical, electrochemical, and photocatalyst properties, ACS Appl. Mater. Inter., 6, 1258-1265. https://doi.org/10.1021/am405076b -
Tanaka, A., Nishino, Y., Sakaguchi, S., Yoshikawa, T., Imamura, K., Hashimoto, K., Kominami, H., 2013, Functionalization of a plasmonic Au/
$TiO_2$ photocatalyst with an Ag co-catalyst for quantitative reduction of nitrobenzene to aminobenzene in 2-propanol suspensions under irradiation of visible light, Chem. Commun., 49, 2551-2553. https://doi.org/10.1039/c3cc39096a - Toyao, T., Saito, M., Horiuchi, Y., Mochizuki, K., Iwata, M., Higashimura, H., Matsuoka, M., 2013, Efficient hydrogen production and photocatalytic reduction of nitrobenzene over a visible-light-responsive metal-organic framework photocatalyst, Catal. Sci. Technol., 3, 2092-2097. https://doi.org/10.1039/c3cy00211j
-
Verma, S., Baig, R. B. N., Nadagouda, M. N., Varma, R. S., 2017, Hydroxylation of benzene via-C-H activation using bimetallic
$4CuAg@g-C_3N_4$ , ACS Sustainable Chem. Eng., 5 3637-3640. https://doi.org/10.1021/acssuschemeng.7b00772 - Xiao, Q., Sarina, S., Waclawik, E. R., Jia, J., Chang, J., Riches, J. D., Wu, H., Zheng, Z., Zhu, H., 2016, Alloying gold with copper makes for a highly selective visible-light photocatalyst for the reduction of nitroaromatics to aminobenzenes, ACS Catal., 6, 1744-1753. https://doi.org/10.1021/acscatal.5b02643
-
Yang, Z., Xu, X., Liang, X., Lei, C., Cui, Y., Wu, W., Yang, Y., Zhang, Z., Lei, Z., 2017, Construction of heterostructured MIL-125/Ag/
$g-C_3N_4$ nanocomposite as an efficient bifunctional visible light photocatalyst for the organic oxidation and reduction reactions, Appl. Catal. B, 205, 42-54. https://doi.org/10.1016/j.apcatb.2016.12.012 - Zhang, Y., Liu, J., Wu, G., Chen, W., 2012, Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production, Nanoscale, 4, 5300-5303. https://doi.org/10.1039/c2nr30948c
- Zhu, H., Ke, X., Yang, X., Sarina, S., Liu, H., 2010, Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light, Angew. Chem. Int. Ed., 49, 9657-9661. https://doi.org/10.1002/anie.201003908