DOI QR코드

DOI QR Code

Optical Transmission Characteristics of Tellurium-based Phase-change Chalcogenide Thin Films

Tellurium계 상변화 칼코겐화물 박막의 광투과 특성

  • Yoon, Hoi Jin (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Bang, Ki Su (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Lee, Seung-Yun (Department of Advanced Materials Engineering, Hanbat National University)
  • 윤회진 (한밭대학교 신소재공학과) ;
  • 방기수 (한밭대학교 신소재공학과) ;
  • 이승윤 (한밭대학교 신소재공학과)
  • Received : 2016.05.09
  • Accepted : 2016.06.02
  • Published : 2016.07.01

Abstract

The dielectric thin films applied to multi-colored semitransparent thin film solar cells have been extensively studied. In this work, we prepared GeSbTe and GeTe chalcogenide thin films using magnetron sputtering, and investigated their optical and phase-change properties to replace the dielectric films. The changes of surface morphology, sheet resistance, and X-ray diffraction of the Te-based chalcogenide films support the fact that the amorphous stability of GeTe films is superior to that of GeSbTe films. While both amorphous GeSbTe and GeTe films thinner than 30 nm have optical transparency between 5% and 60%, GeTe films transmit more visible light than GeSbTe films. It is confirmed by computer simulation that the color of semitransparent silicon thin film solar cells can be adjusted with the addition of GeSbTe or GeTe films. Since it is possible to adjust the contrast of the solar cells by exploiting the phase-change property, the two kinds of chalcogenide films are anticipated to be used as an optical layer in semitransparent solar cells.

Keywords

References

  1. S. R. Elliott, Int. J. Appl. Glass Sci., 6, 15 (2015). [DOI: http://dx.doi.org/10.1111/ijag.12107]
  2. M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and Din Ping Tsai, Opt. Express, 19, 16975 (2011). [DOI: http://dx.doi.org/10.1364/OE.19.016975]
  3. J. W. Lim, S. J. Yun, and S. Y. Lee, Korean Patent, 10-2012-0144271 (2012).
  4. J. Benemann, O. Chehab, and E. Schaar-Gabriel, Sol. Energ. Mat. Sol. C., 67, 345 (2001). [DOI: http://dx.doi.org/10.1016/S0927-0248(00)00302-0]
  5. M. Fang, Q. Li, and F. Gan, J. Mater. Sci. Technol., 20, 509 (2004).
  6. J. Li, F. Gan, Z. Gu, Q. Xie, H. Ruan, and P. Liang, Opt. Mater., 14, 337 (2000). [DOI: http://dx.doi.org/10.1016/S0925-3467(00)00008-2]
  7. S. Y. Lee, S. H. Choi, J. Y. Kang, and C. O. Park, J. Appl. Phys., 88, 5946 (2000). [DOI: http://dx.doi.org/10.1063/1.1288783]
  8. S. H. Lee, S. J. Yun, M. Shin, and J. W. Lim, Sol. Energ. Mat. Sol. C., 117, 519 (2013). [DOI: http://dx.doi.org/10.1016/j.solmat.2013.07.029]
  9. S. Y. Lee, K. S. Bang, and J. W. Lim, J. Electron. Mater., 43, 3204 (2014). [DOI: http://dx.doi.org/10.1007/s11664-014-3286-z]